Model-Agnostic Covariate-Assisted Inference on Partially Identified Causal Effects
- URL: http://arxiv.org/abs/2310.08115v2
- Date: Sun, 17 Nov 2024 05:39:29 GMT
- Title: Model-Agnostic Covariate-Assisted Inference on Partially Identified Causal Effects
- Authors: Wenlong Ji, Lihua Lei, Asher Spector,
- Abstract summary: Many causal estimands are only partially identifiable since they depend on the unobservable joint distribution between potential outcomes.
We propose a unified and model-agnostic inferential approach for a wide class of partially identified estimands.
- Score: 1.9253333342733674
- License:
- Abstract: Many causal estimands are only partially identifiable since they depend on the unobservable joint distribution between potential outcomes. Stratification on pretreatment covariates can yield sharper bounds; however, unless the covariates are discrete with relatively small support, this approach typically requires binning covariates or estimating the conditional distributions of the potential outcomes given the covariates. Binning can result in substantial efficiency loss and become challenging to implement, even with a moderate number of covariates. Estimating conditional distributions, on the other hand, may yield invalid inference if the distributions are inaccurately estimated, such as when a misspecified model is used or when the covariates are high-dimensional. In this paper, we propose a unified and model-agnostic inferential approach for a wide class of partially identified estimands. Our method, based on duality theory for optimal transport problems, has four key properties. First, in randomized experiments, our approach can wrap around any estimates of the conditional distributions and provide uniformly valid inference, even if the initial estimates are arbitrarily inaccurate. A simple extension of our method to observational studies is doubly robust in the usual sense. Second, if nuisance parameters are estimated at semiparametric rates, our estimator is asymptotically unbiased for the sharp partial identification bound. Third, we can apply the multiplier bootstrap to select covariates and models without sacrificing validity, even if the true model is not selected. Finally, our method is computationally efficient. Overall, in three empirical applications, our method consistently reduces the width of estimated identified sets and confidence intervals without making additional structural assumptions.
Related papers
- Accounting for Missing Covariates in Heterogeneous Treatment Estimation [17.09751619857397]
We introduce a novel partial identification strategy based on ideas from ecological inference.
We show that our framework can produce bounds that are much tighter than would otherwise be possible.
arXiv Detail & Related papers (2024-10-21T05:47:07Z) - Sparsified Simultaneous Confidence Intervals for High-Dimensional Linear
Models [4.010566541114989]
We propose a notion of simultaneous confidence intervals called the sparsified simultaneous confidence intervals.
Our intervals are sparse in the sense that some of the intervals' upper and lower bounds are shrunken to zero.
The proposed method can be coupled with various selection procedures, making it ideal for comparing their uncertainty.
arXiv Detail & Related papers (2023-07-14T18:37:57Z) - Semi-Parametric Inference for Doubly Stochastic Spatial Point Processes: An Approximate Penalized Poisson Likelihood Approach [3.085995273374333]
Doubly-stochastic point processes model the occurrence of events over a spatial domain as an inhomogeneous process conditioned on the realization of a random intensity function.
Existing implementations of doubly-stochastic spatial models are computationally demanding, often have limited theoretical guarantee, and/or rely on restrictive assumptions.
arXiv Detail & Related papers (2023-06-11T19:48:39Z) - Covariate balancing using the integral probability metric for causal
inference [1.8899300124593648]
In this paper, we consider to use the integral probability metric (IPM) which is a metric between two probability measures.
We prove that the corresponding estimator can be consistent without correctly specifying any model.
Our proposed method outperforms existing weighting methods with large margins for finite samples.
arXiv Detail & Related papers (2023-05-23T06:06:45Z) - The Implicit Delta Method [61.36121543728134]
In this paper, we propose an alternative, the implicit delta method, which works by infinitesimally regularizing the training loss of uncertainty.
We show that the change in the evaluation due to regularization is consistent for the variance of the evaluation estimator, even when the infinitesimal change is approximated by a finite difference.
arXiv Detail & Related papers (2022-11-11T19:34:17Z) - Statistical Efficiency of Score Matching: The View from Isoperimetry [96.65637602827942]
We show a tight connection between statistical efficiency of score matching and the isoperimetric properties of the distribution being estimated.
We formalize these results both in the sample regime and in the finite regime.
arXiv Detail & Related papers (2022-10-03T06:09:01Z) - Scalable Personalised Item Ranking through Parametric Density Estimation [53.44830012414444]
Learning from implicit feedback is challenging because of the difficult nature of the one-class problem.
Most conventional methods use a pairwise ranking approach and negative samplers to cope with the one-class problem.
We propose a learning-to-rank approach, which achieves convergence speed comparable to the pointwise counterpart.
arXiv Detail & Related papers (2021-05-11T03:38:16Z) - Deconfounding Scores: Feature Representations for Causal Effect
Estimation with Weak Overlap [140.98628848491146]
We introduce deconfounding scores, which induce better overlap without biasing the target of estimation.
We show that deconfounding scores satisfy a zero-covariance condition that is identifiable in observed data.
In particular, we show that this technique could be an attractive alternative to standard regularizations.
arXiv Detail & Related papers (2021-04-12T18:50:11Z) - Distribution-Free Robust Linear Regression [5.532477732693]
We study random design linear regression with no assumptions on the distribution of the covariates.
We construct a non-linear estimator achieving excess risk of order $d/n$ with the optimal sub-exponential tail.
We prove an optimal version of the classical bound for the truncated least squares estimator due to Gy"orfi, Kohler, Krzyzak, and Walk.
arXiv Detail & Related papers (2021-02-25T15:10:41Z) - A One-step Approach to Covariate Shift Adaptation [82.01909503235385]
A default assumption in many machine learning scenarios is that the training and test samples are drawn from the same probability distribution.
We propose a novel one-step approach that jointly learns the predictive model and the associated weights in one optimization.
arXiv Detail & Related papers (2020-07-08T11:35:47Z) - Nonparametric Score Estimators [49.42469547970041]
Estimating the score from a set of samples generated by an unknown distribution is a fundamental task in inference and learning of probabilistic models.
We provide a unifying view of these estimators under the framework of regularized nonparametric regression.
We propose score estimators based on iterative regularization that enjoy computational benefits from curl-free kernels and fast convergence.
arXiv Detail & Related papers (2020-05-20T15:01:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.