3D modelling of survey scene from images enhanced with a multi-exposure
fusion
- URL: http://arxiv.org/abs/2111.05541v1
- Date: Wed, 10 Nov 2021 06:02:44 GMT
- Title: 3D modelling of survey scene from images enhanced with a multi-exposure
fusion
- Authors: Kwok-Leung Chan, Liping Li, Arthur Wing-Tak Leung, Ho-Yin Chan
- Abstract summary: We propose a method that can be used to improve the visibility of the images, and eventually reduce the errors of the 3D scene model.
The idea is inspired by image dehazing. Each original image is first transformed into multiple exposure images.
The enhanced images can reconstruct 3D scene models with sub-millimeter mean errors.
- Score: 1.7816843507516948
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In current practice, scene survey is carried out by workers using total
stations. The method has high accuracy, but it incurs high costs if continuous
monitoring is needed. Techniques based on photogrammetry, with the relatively
cheaper digital cameras, have gained wide applications in many fields. Besides
point measurement, photogrammetry can also create a three-dimensional (3D)
model of the scene. Accurate 3D model reconstruction depends on high quality
images. Degraded images will result in large errors in the reconstructed 3D
model. In this paper, we propose a method that can be used to improve the
visibility of the images, and eventually reduce the errors of the 3D scene
model. The idea is inspired by image dehazing. Each original image is first
transformed into multiple exposure images by means of gamma-correction
operations and adaptive histogram equalization. The transformed images are
analyzed by the computation of the local binary patterns. The image is then
enhanced, with each pixel generated from the set of transformed image pixels
weighted by a function of the local pattern feature and image saturation.
Performance evaluation has been performed on benchmark image dehazing datasets.
Experimentations have been carried out on outdoor and indoor surveys. Our
analysis finds that the method works on different types of degradation that
exist in both outdoor and indoor images. When fed into the photogrammetry
software, the enhanced images can reconstruct 3D scene models with
sub-millimeter mean errors.
Related papers
- The More You See in 2D, the More You Perceive in 3D [32.578628729549145]
SAP3D is a system for 3D reconstruction and novel view synthesis from an arbitrary number of unposed images.
We show that as the number of input images increases, the performance of our approach improves.
arXiv Detail & Related papers (2024-04-04T17:59:40Z) - 3DMiner: Discovering Shapes from Large-Scale Unannotated Image Datasets [34.610546020800236]
3DMiner is a pipeline for mining 3D shapes from challenging datasets.
Our method is capable of producing significantly better results than state-of-the-art unsupervised 3D reconstruction techniques.
We show how 3DMiner can be applied to in-the-wild data by reconstructing shapes present in images from the LAION-5B dataset.
arXiv Detail & Related papers (2023-10-29T23:08:19Z) - ARTIC3D: Learning Robust Articulated 3D Shapes from Noisy Web Image
Collections [71.46546520120162]
Estimating 3D articulated shapes like animal bodies from monocular images is inherently challenging.
We propose ARTIC3D, a self-supervised framework to reconstruct per-instance 3D shapes from a sparse image collection in-the-wild.
We produce realistic animations by fine-tuning the rendered shape and texture under rigid part transformations.
arXiv Detail & Related papers (2023-06-07T17:47:50Z) - Visual Localization using Imperfect 3D Models from the Internet [54.731309449883284]
This paper studies how imperfections in 3D models affect localization accuracy.
We show that 3D models from the Internet show promise as an easy-to-obtain scene representation.
arXiv Detail & Related papers (2023-04-12T16:15:05Z) - PhotoScene: Photorealistic Material and Lighting Transfer for Indoor
Scenes [84.66946637534089]
PhotoScene is a framework that takes input image(s) of a scene and builds a photorealistic digital twin with high-quality materials and similar lighting.
We model scene materials using procedural material graphs; such graphs represent photorealistic and resolution-independent materials.
We evaluate our technique on objects and layout reconstructions from ScanNet, SUN RGB-D and stock photographs, and demonstrate that our method reconstructs high-quality, fully relightable 3D scenes.
arXiv Detail & Related papers (2022-07-02T06:52:44Z) - A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware
Image Synthesis [163.96778522283967]
We propose a shading-guided generative implicit model that is able to learn a starkly improved shape representation.
An accurate 3D shape should also yield a realistic rendering under different lighting conditions.
Our experiments on multiple datasets show that the proposed approach achieves photorealistic 3D-aware image synthesis.
arXiv Detail & Related papers (2021-10-29T10:53:12Z) - Using Adaptive Gradient for Texture Learning in Single-View 3D
Reconstruction [0.0]
Learning-based approaches for 3D model reconstruction have attracted attention owing to its modern applications.
We present a novel sampling algorithm by optimizing the gradient of predicted coordinates based on the variance on the sampling image.
We also adopt Frechet Inception Distance (FID) to form a loss function in learning, which helps bridging the gap between rendered images and input images.
arXiv Detail & Related papers (2021-04-29T07:52:54Z) - CAMPARI: Camera-Aware Decomposed Generative Neural Radiance Fields [67.76151996543588]
We learn a 3D- and camera-aware generative model which faithfully recovers not only the image but also the camera data distribution.
At test time, our model generates images with explicit control over the camera as well as the shape and appearance of the scene.
arXiv Detail & Related papers (2021-03-31T17:59:24Z) - An Effective Loss Function for Generating 3D Models from Single 2D Image
without Rendering [0.0]
Differentiable rendering is a very successful technique that applies to a Single-View 3D Reconstruction.
Currents use losses based on pixels between a rendered image of some 3D reconstructed object and ground-truth images from given matched viewpoints to optimise parameters of the 3D shape.
We propose a novel effective loss function that evaluates how well the projections of reconstructed 3D point clouds cover the ground truth object's silhouette.
arXiv Detail & Related papers (2021-03-05T00:02:18Z) - Lightweight Multi-View 3D Pose Estimation through Camera-Disentangled
Representation [57.11299763566534]
We present a solution to recover 3D pose from multi-view images captured with spatially calibrated cameras.
We exploit 3D geometry to fuse input images into a unified latent representation of pose, which is disentangled from camera view-points.
Our architecture then conditions the learned representation on camera projection operators to produce accurate per-view 2d detections.
arXiv Detail & Related papers (2020-04-05T12:52:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.