論文の概要: Adapting Surprise Minimizing Reinforcement Learning Techniques for
Transactive Control
- arxiv url: http://arxiv.org/abs/2111.06025v1
- Date: Thu, 11 Nov 2021 02:21:08 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-13 00:05:26.666892
- Title: Adapting Surprise Minimizing Reinforcement Learning Techniques for
Transactive Control
- Title(参考訳): 過渡制御のための強化学習手法の最小化
- Authors: William Arnold, Tarang Srivastava, Lucas Spangher, Utkarsha Agwan,
Costas Spanos
- Abstract要約: アーキテクチャの変更を最小限に抑えた強化学習コントローラを提案する。
我々は,人々のエネルギー使用量の予測可能性を利用して,驚きの最小化が学習速度の向上に有効であることが示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Optimizing prices for energy demand response requires a flexible controller
with ability to navigate complex environments. We propose a reinforcement
learning controller with surprise minimizing modifications in its architecture.
We suggest that surprise minimization can be used to improve learning speed,
taking advantage of predictability in peoples' energy usage. Our architecture
performs well in a simulation of energy demand response. We propose this
modification to improve functionality and save in a large scale experiment.
- Abstract(参考訳): エネルギー需要応答に対する価格の最適化には、複雑な環境をナビゲートできる柔軟なコントローラが必要である。
本稿では,アーキテクチャの変更を最小化する強化学習コントローラを提案する。
エネルギー利用の予測可能性を活用することで,学習速度の向上にサプライズ最小化が有効であることを示唆する。
我々のアーキテクチャはエネルギー需要応答のシミュレーションでよく機能する。
我々は,この機能を改善し,大規模な実験で節約するために,この修正を提案する。
関連論文リスト
- Towards an Adaptable and Generalizable Optimization Engine in Decision
and Control: A Meta Reinforcement Learning Approach [6.302621910090619]
メタ強化学習(RL)に基づいてMPCコントローラを学習し、コントローラを更新する。
これは専門家によるデモンストレーションを必要とせず、目に見えないコントロールタスクにデプロイされた場合の迅速な適応を可能にする。
論文 参考訳(メタデータ) (2024-01-04T19:41:33Z) - Learning and Adapting Agile Locomotion Skills by Transferring Experience [71.8926510772552]
本稿では,既存のコントローラから新しいタスクを学習するために経験を移譲することで,複雑なロボティクススキルを訓練するためのフレームワークを提案する。
提案手法は,複雑なアジャイルジャンプ行動の学習,後肢を歩いたまま目標地点への移動,新しい環境への適応を可能にする。
論文 参考訳(メタデータ) (2023-04-19T17:37:54Z) - AnycostFL: Efficient On-Demand Federated Learning over Heterogeneous
Edge Devices [20.52519915112099]
我々はAny CostFLというコスト調整可能なFLフレームワークを提案し、多様なエッジデバイスがローカル更新を効率的に実行できるようにする。
実験結果から,我々の学習フレームワークは,適切なグローバルテスト精度を実現するために,トレーニング遅延とエネルギー消費の最大1.9倍の削減が可能であることが示唆された。
論文 参考訳(メタデータ) (2023-01-08T15:25:55Z) - Actively Learning Costly Reward Functions for Reinforcement Learning [56.34005280792013]
複雑な実世界の環境でエージェントを訓練することは、桁違いに高速であることを示す。
強化学習の手法を新しい領域に適用することにより、興味深く非自明な解を見つけることができることを示す。
論文 参考訳(メタデータ) (2022-11-23T19:17:20Z) - Optimizing Airborne Wind Energy with Reinforcement Learning [0.0]
強化学習(Reinforcement Learning)は、システムの事前の知識を必要とせずに、観察と利益ある行動とを関連付ける技術である。
シミュレーション環境において、強化学習は、遠距離で車両を牽引できるように、カイトを効率的に制御する方法を見出した。
論文 参考訳(メタデータ) (2022-03-27T10:28:16Z) - Learning Robotic Manipulation Skills Using an Adaptive Force-Impedance
Action Space [7.116986445066885]
強化学習は、様々な困難な意思決定タスクにおいて、有望な結果をもたらしました。
高速な人間のような適応制御手法は複雑なロボットの相互作用を最適化するが、非構造化タスクに必要なマルチモーダルフィードバックを統合することができない。
本稿では,階層的学習と適応アーキテクチャにおける学習問題を要因として,両世界を最大限に活用することを提案する。
論文 参考訳(メタデータ) (2021-10-19T12:09:02Z) - Learning Discrete Energy-based Models via Auxiliary-variable Local
Exploration [130.89746032163106]
離散構造データに対する条件付きおよび非条件付きEMMを学習するための新しいアルゴリズムであるALOEを提案する。
エネルギー関数とサンプリング器は、新しい変分型電力繰り返しにより効率よく訓練できることを示す。
本稿では、ソフトウェアテストのためのエネルギーモデルガイド付ファジィザについて、libfuzzerのようなよく設計されたファジィエンジンに匹敵する性能を実現する。
論文 参考訳(メタデータ) (2020-11-10T19:31:29Z) - Learning a Contact-Adaptive Controller for Robust, Efficient Legged
Locomotion [95.1825179206694]
四足歩行ロボットのためのロバストコントローラを合成するフレームワークを提案する。
高レベルコントローラは、環境の変化に応じてプリミティブのセットを選択することを学習する。
確立された制御方法を使用してプリミティブを堅牢に実行する低レベルコントローラ。
論文 参考訳(メタデータ) (2020-09-21T16:49:26Z) - A Relearning Approach to Reinforcement Learning for Control of Smart
Buildings [1.8799681615947088]
本稿では、漸進的深層学習(RL)を用いた制御方針の連続的再学習が、非定常過程におけるポリシー学習を改善することを実証する。
我々は,全体の快適さを犠牲にすることなく,建築エネルギーを同時に削減するインクリメンタルRL技術を開発した。
論文 参考訳(メタデータ) (2020-08-04T23:31:05Z) - Emergent Real-World Robotic Skills via Unsupervised Off-Policy
Reinforcement Learning [81.12201426668894]
報奨関数を使わずに多様なスキルを習得し,これらのスキルを下流のタスクに再利用する効率的な強化学習手法を開発した。
提案アルゴリズムは学習効率を大幅に向上させ,報酬のない実世界のトレーニングを実現する。
また,学習スキルは,目標指向ナビゲーションのためのモデル予測制御を用いて,追加のトレーニングを伴わずに構成可能であることも実証した。
論文 参考訳(メタデータ) (2020-04-27T17:38:53Z) - NeurOpt: Neural network based optimization for building energy
management and climate control [58.06411999767069]
モデル同定のコストを削減するために,ニューラルネットワークに基づくデータ駆動制御アルゴリズムを提案する。
イタリアにある10の独立したゾーンを持つ2階建ての建物で、学習と制御のアルゴリズムを検証する。
論文 参考訳(メタデータ) (2020-01-22T00:51:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。