論文の概要: Hybrid Saturation Restoration for LDR Images of HDR Scenes
- arxiv url: http://arxiv.org/abs/2111.06038v1
- Date: Thu, 11 Nov 2021 03:20:32 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-12 22:28:19.559993
- Title: Hybrid Saturation Restoration for LDR Images of HDR Scenes
- Title(参考訳): HDRシーンのLDR画像のためのハイブリッド飽和復元
- Authors: Chaobing Zheng, Zhengguo Li, and Shiqian Wu
- Abstract要約: 本稿では,LDR画像の飽和領域をモデルベースおよびデータ駆動アプローチの融合により復元する。
2つの合成LDR画像は、まずモデルベースアプローチにより基礎となるLDR画像から生成される。
1つは、入力画像よりも明るく、もう1つは、シャドウ領域を復元し、もう1つは、入力画像よりも暗く、高照度領域を復元する。
- 参考スコア(独自算出の注目度): 18.61019008000831
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: There are shadow and highlight regions in a low dynamic range (LDR) image
which is captured from a high dynamic range (HDR) scene. It is an ill-posed
problem to restore the saturated regions of the LDR image. In this paper, the
saturated regions of the LDR image are restored by fusing model-based and
data-driven approaches. With such a neural augmentation, two synthetic LDR
images are first generated from the underlying LDR image via the model-based
approach. One is brighter than the input image to restore the shadow regions
and the other is darker than the input image to restore the high-light regions.
Both synthetic images are then refined via a novel exposedness aware saturation
restoration network (EASRN). Finally, the two synthetic images and the input
image are combined together via an HDR synthesis algorithm or a multi-scale
exposure fusion algorithm. The proposed algorithm can be embedded in any smart
phones or digital cameras to produce an information-enriched LDR image.
- Abstract(参考訳): 低ダイナミックレンジ(LDR)画像には、ハイダイナミックレンジ(HDR)シーンからキャプチャされる影とハイライト領域がある。
LDR画像の飽和領域を復元するには不適切な問題である。
本稿では,LDR画像の飽和領域をモデルベースおよびデータ駆動アプローチの融合により復元する。
このような神経拡張により、2つの合成LDR画像がモデルベースアプローチを介して基礎となるLDR画像から生成される。
1つは、シャドウ領域を復元するための入力画像より明るく、もう1つは、入力画像よりも暗く、高照度領域を復元する。
両方の合成画像は、新しい露出認識飽和回復ネットワーク(EASRN)を介して精製される。
最後に、2つの合成画像と入力画像がHDR合成アルゴリズムまたはマルチスケール露光融合アルゴリズムを介して結合される。
提案アルゴリズムは,任意のスマートフォンやデジタルカメラに組み込み,情報豊富なldr画像を生成することができる。
関連論文リスト
- A Cycle Ride to HDR: Semantics Aware Self-Supervised Framework for Unpaired LDR-to-HDR Image Translation [0.0]
低ダイナミックレンジ(LDR)から高ダイナミックレンジ(High Dynamic Range)への画像変換は重要なコンピュータビジョン問題である。
現在の最先端の手法のほとんどは、モデルトレーニングのための高品質なペアLDR、データセットを必要とする。
本稿では,改良型サイクル整合対向アーキテクチャを提案し,未ペアのLDR,データセットをトレーニングに利用した。
論文 参考訳(メタデータ) (2024-10-19T11:11:58Z) - HistoHDR-Net: Histogram Equalization for Single LDR to HDR Image
Translation [12.45632443397018]
高ダイナミックレンジ(HDR)イメージングは、現実世界のシーンの高画質と明快さを再現することを目的としている。
この文献は、低ダイナミックレンジ(Low Dynamic Range, LDR)からのHDR画像再構成のための様々なデータ駆動手法を提供している。
これらのアプローチの共通する制限は、再構成されたHDR画像の領域における詳細が欠けていることである。
細部を復元するためのシンプルで効果的な手法Histo-Netを提案する。
論文 参考訳(メタデータ) (2024-02-08T20:14:46Z) - Pano-NeRF: Synthesizing High Dynamic Range Novel Views with Geometry
from Sparse Low Dynamic Range Panoramic Images [82.1477261107279]
そこで本研究では,Sparse LDRパノラマ画像からの照射場を用いて,忠実な幾何復元のための観測回数を増やすことを提案する。
実験により、照射場は幾何復元とHDR再構成の両方において最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2023-12-26T08:10:22Z) - SMAE: Few-shot Learning for HDR Deghosting with Saturation-Aware Masked
Autoencoders [97.64072440883392]
そこで本研究では,SSHDRと呼ばれる2段階の訓練を通した短距離HDRイメージングを実現するための,新しい半教師付きアプローチを提案する。
以前の方法とは異なり、コンテンツを直接回復し、ゴーストを同時に除去することは、最適に達成することが難しい。
実験により、SSHDRは異なるデータセットの内外における定量的かつ定性的に最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2023-04-14T03:42:51Z) - GlowGAN: Unsupervised Learning of HDR Images from LDR Images in the Wild [74.52723408793648]
そこで本研究では,HDR画像の生成モデルを構築するための第1の手法について述べる。
鍵となる考え方は、GAN(Generative Adversarial Network)を訓練して、様々な露光下でLDRに投影された場合、実際のLDR画像と区別できないHDR画像を生成することである。
実験の結果,GlowGANはランドスケープ,雷,窓など多くの難題において,光現実的HDR画像を合成できることがわかった。
論文 参考訳(メタデータ) (2022-11-22T15:42:08Z) - HDR-cGAN: Single LDR to HDR Image Translation using Conditional GAN [24.299931323012757]
低ダイナミックレンジ(LDR)カメラは、現実世界のシーンの広いダイナミックレンジを表現できない。
本研究では,HDR画像の再構成を行いながら,飽和領域の詳細を復元する深層学習手法を提案する。
本稿では,HDR-REALデータセットとHDR-SYNTHデータセットに対して,エンドツーエンドでトレーニングされた新しい条件付きGAN(cGAN)ベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2021-10-04T18:50:35Z) - NTIRE 2021 Challenge on High Dynamic Range Imaging: Dataset, Methods and
Results [56.932867490888015]
本稿では,CVPR 2021と共同で開催されているニュートレンド・イメージ・リカバリ・エンハンスメント(NTIRE)ワークショップ(New Trends in Image Restoration and Enhancement, NTIRE)におけるハイダイナミックレンジイメージングの課題について概説する。
この課題は、1つまたは複数の低ダイナミックレンジ(LDR)観測からHDR画像を推定することを目的としている。
論文 参考訳(メタデータ) (2021-06-02T19:45:16Z) - A Two-stage Deep Network for High Dynamic Range Image Reconstruction [0.883717274344425]
本研究では,新しい2段階深層ネットワークを提案することにより,シングルショットLDRからHDRマッピングへの課題に取り組む。
提案手法は,カメラ応答機能(CRF)や露光設定など,ハードウェア情報を知ることなくHDR画像の再構築を図ることを目的とする。
論文 参考訳(メタデータ) (2021-04-19T15:19:17Z) - HDR-GAN: HDR Image Reconstruction from Multi-Exposed LDR Images with
Large Motions [62.44802076971331]
マルチ露光LDR画像からHDR画像を合成するための新しいGANモデルHDR-GANを提案する。
本手法は,敵対学習を取り入れることで,欠落したコンテンツのある領域に忠実な情報を生成することができる。
論文 参考訳(メタデータ) (2020-07-03T11:42:35Z) - Single-Image HDR Reconstruction by Learning to Reverse the Camera
Pipeline [100.5353614588565]
本稿では,LDR画像形成パイプラインの領域知識をモデルに組み込むことを提案する。
我々は,HDRto-LDR画像形成パイプラインを(1)ダイナミックレンジクリッピング,(2)カメラ応答関数からの非線形マッピング,(3)量子化としてモデル化する。
提案手法は,最先端の単一画像HDR再構成アルゴリズムに対して良好に動作することを示す。
論文 参考訳(メタデータ) (2020-04-02T17:59:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。