Branch and Bound in Mixed Integer Linear Programming Problems: A Survey
of Techniques and Trends
- URL: http://arxiv.org/abs/2111.06257v1
- Date: Fri, 5 Nov 2021 10:18:21 GMT
- Title: Branch and Bound in Mixed Integer Linear Programming Problems: A Survey
of Techniques and Trends
- Authors: Lingying Huang, Xiaomeng Chen, Wei Huo, Jiazheng Wang, Fan Zhang, Bo
Bai, Ling Shi
- Abstract summary: We study different approaches and algorithms for the four critical components in the general branch and bound (B&B) algorithm.
In order to improve the speed of B&B algorithms, learning techniques have been introduced in this algorithm recently.
- Score: 7.432176855020725
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we surveyed the existing literature studying different
approaches and algorithms for the four critical components in the general
branch and bound (B&B) algorithm, namely, branching variable selection, node
selection, node pruning, and cutting-plane selection. However, the complexity
of the B&B algorithm always grows exponentially with respect to the increase of
the decision variable dimensions. In order to improve the speed of B&B
algorithms, learning techniques have been introduced in this algorithm
recently. We further surveyed how machine learning can be used to improve the
four critical components in B&B algorithms. In general, a supervised learning
method helps to generate a policy that mimics an expert but significantly
improves the speed. An unsupervised learning method helps choose different
methods based on the features. In addition, models trained with reinforcement
learning can beat the expert policy, given enough training and a supervised
initialization. Detailed comparisons between different algorithms have been
summarized in our survey. Finally, we discussed some future research directions
to accelerate and improve the algorithms further in the literature.
Related papers
- Meta-Learning from Learning Curves for Budget-Limited Algorithm Selection [11.409496019407067]
In a budget-limited scenario, it is crucial to carefully select an algorithm candidate and allocate a budget for training it.
We propose a novel framework in which an agent must select in the process of learning the most promising algorithm without waiting until it is fully trained.
arXiv Detail & Related papers (2024-10-10T08:09:58Z) - Tree-Based Adaptive Model Learning [62.997667081978825]
We extend the Kearns-Vazirani learning algorithm to handle systems that change over time.
We present a new learning algorithm that can reuse and update previously learned behavior, implement it in the LearnLib library, and evaluate it on large examples.
arXiv Detail & Related papers (2022-08-31T21:24:22Z) - The CLRS Algorithmic Reasoning Benchmark [28.789225199559834]
Learning representations of algorithms is an emerging area of machine learning, seeking to bridge concepts from neural networks with classical algorithms.
We propose the CLRS Algorithmic Reasoning Benchmark, covering classical algorithms from the Introduction to Algorithms textbook.
Our benchmark spans a variety of algorithmic reasoning procedures, including sorting, searching, dynamic programming, graph algorithms, string algorithms and geometric algorithms.
arXiv Detail & Related papers (2022-05-31T09:56:44Z) - Machine Learning for Online Algorithm Selection under Censored Feedback [71.6879432974126]
In online algorithm selection (OAS), instances of an algorithmic problem class are presented to an agent one after another, and the agent has to quickly select a presumably best algorithm from a fixed set of candidate algorithms.
For decision problems such as satisfiability (SAT), quality typically refers to the algorithm's runtime.
In this work, we revisit multi-armed bandit algorithms for OAS and discuss their capability of dealing with the problem.
We adapt them towards runtime-oriented losses, allowing for partially censored data while keeping a space- and time-complexity independent of the time horizon.
arXiv Detail & Related papers (2021-09-13T18:10:52Z) - Algorithm Selection on a Meta Level [58.720142291102135]
We introduce the problem of meta algorithm selection, which essentially asks for the best way to combine a given set of algorithm selectors.
We present a general methodological framework for meta algorithm selection as well as several concrete learning methods as instantiations of this framework.
arXiv Detail & Related papers (2021-07-20T11:23:21Z) - Safe Learning and Optimization Techniques: Towards a Survey of the State
of the Art [3.6954802719347413]
Safe learning and optimization deals with learning and optimization problems that avoid, as much as possible, the evaluation of non-safe input points.
A comprehensive survey of safe reinforcement learning algorithms was published in 2015, but related works in active learning and in optimization were not considered.
This paper reviews those algorithms from a number of domains including reinforcement learning, Gaussian process regression and classification, evolutionary algorithms, and active learning.
arXiv Detail & Related papers (2021-01-23T13:58:09Z) - Evolving Reinforcement Learning Algorithms [186.62294652057062]
We propose a method for meta-learning reinforcement learning algorithms.
The learned algorithms are domain-agnostic and can generalize to new environments not seen during training.
We highlight two learned algorithms which obtain good generalization performance over other classical control tasks, gridworld type tasks, and Atari games.
arXiv Detail & Related papers (2021-01-08T18:55:07Z) - Mastering Rate based Curriculum Learning [78.45222238426246]
We argue that the notion of learning progress itself has several shortcomings that lead to a low sample efficiency for the learner.
We propose a new algorithm, based on the notion of mastering rate, that significantly outperforms learning progress-based algorithms.
arXiv Detail & Related papers (2020-08-14T16:34:01Z) - Run2Survive: A Decision-theoretic Approach to Algorithm Selection based
on Survival Analysis [75.64261155172856]
survival analysis (SA) naturally supports censored data and offers appropriate ways to use such data for learning distributional models of algorithm runtime.
We leverage such models as a basis of a sophisticated decision-theoretic approach to algorithm selection, which we dub Run2Survive.
In an extensive experimental study with the standard benchmark ASlib, our approach is shown to be highly competitive and in many cases even superior to state-of-the-art AS approaches.
arXiv Detail & Related papers (2020-07-06T15:20:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.