Towards a Secure and Reliable Federated Learning using Blockchain
- URL: http://arxiv.org/abs/2201.11311v1
- Date: Thu, 27 Jan 2022 04:09:53 GMT
- Title: Towards a Secure and Reliable Federated Learning using Blockchain
- Authors: Hajar Moudoud, Soumaya Cherkaoui and Lyes Khoukhi
- Abstract summary: Federated learning (FL) is a distributed machine learning technique that enables collaborative training in which devices perform learning using a local dataset while preserving their privacy.
Despite advantages, FL still suffers from several challenges related to reliability, tractability, and anonymity.
We propose a secure and trustworthy blockchain framework (SRB-FL) tailored to FL.
- Score: 5.910619900053764
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated learning (FL) is a distributed machine learning (ML) technique that
enables collaborative training in which devices perform learning using a local
dataset while preserving their privacy. This technique ensures privacy,
communication efficiency, and resource conservation. Despite these advantages,
FL still suffers from several challenges related to reliability (i.e.,
unreliable participating devices in training), tractability (i.e., a large
number of trained models), and anonymity. To address these issues, we propose a
secure and trustworthy blockchain framework (SRB-FL) tailored to FL, which uses
blockchain features to enable collaborative model training in a fully
distributed and trustworthy manner. In particular, we design a secure FL based
on the blockchain sharding that ensures data reliability, scalability, and
trustworthiness. In addition, we introduce an incentive mechanism to improve
the reliability of FL devices using subjective multi-weight logic. The results
show that our proposed SRB-FL framework is efficient and scalable, making it a
promising and suitable solution for federated learning.
Related papers
- Digital Twin-Assisted Federated Learning with Blockchain in Multi-tier Computing Systems [67.14406100332671]
In Industry 4.0 systems, resource-constrained edge devices engage in frequent data interactions.
This paper proposes a digital twin (DT) and federated digital twin (FL) scheme.
The efficacy of our proposed cooperative interference-based FL process has been verified through numerical analysis.
arXiv Detail & Related papers (2024-11-04T17:48:02Z) - Voltran: Unlocking Trust and Confidentiality in Decentralized Federated Learning Aggregation [12.446757264387564]
We present Voltran, an innovative hybrid platform designed to achieve trust, confidentiality, and robustness for Federated Learning (FL)
We offload the FL aggregation into TEE to provide an isolated, trusted and customizable off-chain execution.
We provide strong scalability on multiple FL scenarios by introducing a multi-SGX parallel execution strategy.
arXiv Detail & Related papers (2024-08-13T13:33:35Z) - Enhancing Trust and Privacy in Distributed Networks: A Comprehensive Survey on Blockchain-based Federated Learning [51.13534069758711]
Decentralized approaches like blockchain offer a compelling solution by implementing a consensus mechanism among multiple entities.
Federated Learning (FL) enables participants to collaboratively train models while safeguarding data privacy.
This paper investigates the synergy between blockchain's security features and FL's privacy-preserving model training capabilities.
arXiv Detail & Related papers (2024-03-28T07:08:26Z) - Blockchain-empowered Federated Learning: Benefits, Challenges, and Solutions [31.18229828293164]
Federated learning (FL) is a distributed machine learning approach that protects user data privacy by training models locally on clients and aggregating them on a parameter server.
While effective at preserving privacy, FL systems face limitations such as single points of failure, lack of incentives, and inadequate security.
To address these challenges, blockchain technology is integrated into FL systems to provide stronger security, fairness, and scalability.
arXiv Detail & Related papers (2024-03-01T07:41:05Z) - Enhancing Scalability and Reliability in Semi-Decentralized Federated
Learning With Blockchain: Trust Penalization and Asynchronous Functionality [0.0]
The paper focuses on enhancing the trustworthiness of participating nodes through a trust penalization mechanism.
The proposed system aims to create a fair, secure and transparent environment for collaborative machine learning without compromising data privacy.
arXiv Detail & Related papers (2023-10-30T06:05:50Z) - The Implications of Decentralization in Blockchained Federated Learning: Evaluating the Impact of Model Staleness and Inconsistencies [2.6391879803618115]
We study the practical implications of outsourcing the orchestration of federated learning to a democratic setting such as in a blockchain.
Using simulation, we evaluate the blockchained FL operation by applying two different ML models on the well-known MNIST and CIFAR-10 datasets.
Our results show the high impact of model inconsistencies on the accuracy of the models (up to a 35% decrease in prediction accuracy)
arXiv Detail & Related papers (2023-10-11T13:18:23Z) - Fairness, Integrity, and Privacy in a Scalable Blockchain-based
Federated Learning System [0.0]
Federated machine learning (FL) allows to collectively train models on sensitive data as only the clients' models and not their training data need to be shared.
Despite the attention that research on FL has drawn, the concept still lacks broad adoption in practice.
This paper suggests a FL system that incorporates blockchain technology, local differential privacy, and zero-knowledge proofs.
arXiv Detail & Related papers (2021-11-11T16:08:44Z) - RoFL: Attestable Robustness for Secure Federated Learning [59.63865074749391]
Federated Learning allows a large number of clients to train a joint model without the need to share their private data.
To ensure the confidentiality of the client updates, Federated Learning systems employ secure aggregation.
We present RoFL, a secure Federated Learning system that improves robustness against malicious clients.
arXiv Detail & Related papers (2021-07-07T15:42:49Z) - Federated Robustness Propagation: Sharing Adversarial Robustness in
Federated Learning [98.05061014090913]
Federated learning (FL) emerges as a popular distributed learning schema that learns from a set of participating users without requiring raw data to be shared.
adversarial training (AT) provides a sound solution for centralized learning, extending its usage for FL users has imposed significant challenges.
We show that existing FL techniques cannot effectively propagate adversarial robustness among non-iid users.
We propose a simple yet effective propagation approach that transfers robustness through carefully designed batch-normalization statistics.
arXiv Detail & Related papers (2021-06-18T15:52:33Z) - Blockchain Assisted Decentralized Federated Learning (BLADE-FL) with
Lazy Clients [124.48732110742623]
We propose a novel framework by integrating blockchain into Federated Learning (FL)
BLADE-FL has a good performance in terms of privacy preservation, tamper resistance, and effective cooperation of learning.
It gives rise to a new problem of training deficiency, caused by lazy clients who plagiarize others' trained models and add artificial noises to conceal their cheating behaviors.
arXiv Detail & Related papers (2020-12-02T12:18:27Z) - Resource Management for Blockchain-enabled Federated Learning: A Deep
Reinforcement Learning Approach [54.29213445674221]
Federated Learning (BFL) enables mobile devices to collaboratively train neural network models required by a Machine Learning Model Owner (MLMO)
The issue of BFL is that the mobile devices have energy and CPU constraints that may reduce the system lifetime and training efficiency.
We propose to use the Deep Reinforcement Learning (DRL) to derive the optimal decisions for theO.
arXiv Detail & Related papers (2020-04-08T16:29:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.