論文の概要: Distribution-Aware Single-Stage Models for Multi-Person 3D Pose
Estimation
- arxiv url: http://arxiv.org/abs/2203.07697v2
- Date: Wed, 16 Mar 2022 03:11:43 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-17 11:29:23.069455
- Title: Distribution-Aware Single-Stage Models for Multi-Person 3D Pose
Estimation
- Title(参考訳): 多人数3次元ポーズ推定のための分布認識型単段モデル
- Authors: Zitian Wang, Xuecheng Nie, Xiaochao Qu, Yunpeng Chen, Si Liu
- Abstract要約: 本稿では,多人数の3Dポーズ推定問題に対処する新しいDASモデルを提案する。
提案するDASモデルでは,3次元カメラ空間における人物位置と人体関節をワンパスで同時に位置決めする。
CMU Panoptic と MuPoTS-3D のベンチマークに関する総合的な実験は、提案したDASモデルの優れた効率を実証している。
- 参考スコア(独自算出の注目度): 29.430404703883084
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we present a novel Distribution-Aware Single-stage (DAS) model
for tackling the challenging multi-person 3D pose estimation problem. Different
from existing top-down and bottom-up methods, the proposed DAS model
simultaneously localizes person positions and their corresponding body joints
in the 3D camera space in a one-pass manner. This leads to a simplified
pipeline with enhanced efficiency. In addition, DAS learns the true
distribution of body joints for the regression of their positions, rather than
making a simple Laplacian or Gaussian assumption as previous works. This
provides valuable priors for model prediction and thus boosts the
regression-based scheme to achieve competitive performance with volumetric-base
ones. Moreover, DAS exploits a recursive update strategy for progressively
approaching to regression target, alleviating the optimization difficulty and
further lifting the regression performance. DAS is implemented with a fully
Convolutional Neural Network and end-to-end learnable. Comprehensive
experiments on benchmarks CMU Panoptic and MuPoTS-3D demonstrate the superior
efficiency of the proposed DAS model, specifically 1.5x speedup over previous
best model, and its stat-of-the-art accuracy for multi-person 3D pose
estimation.
- Abstract(参考訳): 本稿では,多人数3次元ポーズ推定問題に取り組むための分散認識単段モデルを提案する。
既存のトップダウン法とボトムアップ法と異なり,提案したDASモデルは1パス方式で3Dカメラ空間内の人物位置と対応する身体関節を同時にローカライズする。
これにより、効率が向上した単純化されたパイプラインが実現される。
さらにdasは、以前の作品のように単純なラプラシアンやガウス的な仮定をするのではなく、それらの位置の回帰のための身体関節の真の分布を学ぶ。
これにより、モデル予測に価値ある優先順位が与えられ、ボリュームベースの予測と競合するパフォーマンスを達成するために回帰ベースのスキームが促進される。
さらに、DASは回帰目標に徐々に近づき、最適化の難しさを軽減し、回帰性能をさらに高める再帰的な更新戦略を利用する。
DASは完全な畳み込みニューラルネットワークで実装され、エンドツーエンドで学習可能である。
CMU Panoptic と MuPoTS-3D のベンチマーク実験は、提案したDASモデルのより優れた効率、特に以前のベストモデルよりも1.5倍の高速化、そして多人数の3Dポーズ推定における最先端の精度を示す。
関連論文リスト
- Addressing Concept Shift in Online Time Series Forecasting: Detect-then-Adapt [37.98336090671441]
概念 textbfDrift textbfDetection antextbfD textbfAdaptation (D3A)
まずドリフトの概念を検知し、次に急激な適応の検出の後、現在のモデルをドリフトされた概念に積極的に適応する。
これは、トレイン-テストのパフォーマンスの不整合に寄与する重要な要因であるデータ分散ギャップを軽減するのに役立ちます。
論文 参考訳(メタデータ) (2024-03-22T04:44:43Z) - DiffHPE: Robust, Coherent 3D Human Pose Lifting with Diffusion [54.0238087499699]
拡散モデルにより,人間のポーズ推定精度,ロバスト性,コヒーレンス性が向上することを示す。
3D-HPEにおける拡散モデルを利用する新しい戦略であるDiffHPEを紹介する。
以上の結果から, 独立拡散モデルにより, 予測可能な性能が得られる一方で, 教師付きモデルと組み合わせて精度が向上することが示唆された。
論文 参考訳(メタデータ) (2023-09-04T12:54:10Z) - A Probabilistic Attention Model with Occlusion-aware Texture Regression
for 3D Hand Reconstruction from a Single RGB Image [5.725477071353354]
深層学習のアプローチは、1枚のRGB画像から3Dの手の再構築に有望な結果を示している。
本稿では,モデルに基づくアプローチの堅牢性を実現するための新しい確率モデルを提案する。
本稿では,教師付きシナリオと弱教師付きシナリオの両方において,提案する確率モデルの柔軟性を実証する。
論文 参考訳(メタデータ) (2023-04-27T16:02:32Z) - Learned Vertex Descent: A New Direction for 3D Human Model Fitting [64.04726230507258]
画像やスキャンに適合する3次元人体モデルのための新しい最適化手法を提案する。
われわれのアプローチは、非常に異なる体型を持つ服を着た人々の基盤となる身体を捉えることができ、最先端技術と比べて大きな改善を達成できる。
LVDはまた、人間と手の3次元モデル適合にも適用でき、よりシンプルで高速な方法でSOTAに大きな改善が示される。
論文 参考訳(メタデータ) (2022-05-12T17:55:51Z) - Uncertainty-Aware Adaptation for Self-Supervised 3D Human Pose
Estimation [70.32536356351706]
本稿では、2つの出力ヘッドを2つの異なる構成にサブスクライブする共通のディープネットワークバックボーンを構成するMPP-Netを紹介する。
ポーズと関節のレベルで予測の不確実性を定量化するための適切な尺度を導出する。
本稿では,提案手法の総合評価を行い,ベンチマークデータセット上での最先端性能を示す。
論文 参考訳(メタデータ) (2022-03-29T07:14:58Z) - Dynamic Iterative Refinement for Efficient 3D Hand Pose Estimation [87.54604263202941]
本稿では,従来の推定値の修正に部分的レイヤを反復的に活用する,小さなディープニューラルネットワークを提案する。
学習したゲーティング基準を用いて、ウェイトシェアリングループから抜け出すかどうかを判断し、モデルにサンプルごとの適応を可能にする。
提案手法は,広く使用されているベンチマークの精度と効率の両面から,最先端の2D/3Dハンドポーズ推定手法より一貫して優れている。
論文 参考訳(メタデータ) (2021-11-11T23:31:34Z) - Probabilistic Modeling for Human Mesh Recovery [73.11532990173441]
本稿では,2次元の証拠から3次元の人体復元の問題に焦点を当てた。
我々は,この問題を,入力から3Dポーズの分布へのマッピング学習として再考した。
論文 参考訳(メタデータ) (2021-08-26T17:55:11Z) - Inference Stage Optimization for Cross-scenario 3D Human Pose Estimation [97.93687743378106]
既存の3Dポーズ推定モデルは、目に見えないポーズを持つ新しいシナリオに適用する場合、パフォーマンス低下を被る。
本稿では、3次元ポーズモデルの一般化性を改善するための新しいフレームワークである推論段階最適化(ISO)を提案する。
注目すべきは、MPI-INF-3DHPで83.6%の最先端の3D PCKが得られることだ。
論文 参考訳(メタデータ) (2020-07-04T09:45:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。