論文の概要: Behavior-Dependent Linear Recurrent Units for Efficient Sequential Recommendation
- arxiv url: http://arxiv.org/abs/2406.12580v2
- Date: Thu, 05 Sep 2024 21:29:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-10 21:41:10.100276
- Title: Behavior-Dependent Linear Recurrent Units for Efficient Sequential Recommendation
- Title(参考訳): 効率的なシークエンシャルレコメンデーションのための振舞い依存線形リカレントユニット
- Authors: Chengkai Liu, Jianghao Lin, Hanzhou Liu, Jianling Wang, James Caverlee,
- Abstract要約: RecBLRは、振舞い依存リニアリカレントユニットに基づく効率的なシークエンシャルレコメンデーションモデルである。
本モデルは,ユーザの行動モデリングとレコメンデーション性能を大幅に向上させる。
- 参考スコア(独自算出の注目度): 18.75561256311228
- License:
- Abstract: Sequential recommender systems aims to predict the users' next interaction through user behavior modeling with various operators like RNNs and attentions. However, existing models generally fail to achieve the three golden principles for sequential recommendation simultaneously, i.e., training efficiency, low-cost inference, and strong performance. To this end, we propose RecBLR, an Efficient Sequential Recommendation Model based on Behavior-Dependent Linear Recurrent Units to accomplish the impossible triangle of the three principles. By incorporating gating mechanisms and behavior-dependent designs into linear recurrent units, our model significantly enhances user behavior modeling and recommendation performance. Furthermore, we unlock the parallelizable training as well as inference efficiency for our model by designing a hardware-aware scanning acceleration algorithm with a customized CUDA kernel. Extensive experiments on real-world datasets with varying lengths of user behavior sequences demonstrate RecBLR's remarkable effectiveness in simultaneously achieving all three golden principles - strong recommendation performance, training efficiency, and low-cost inference, while exhibiting excellent scalability to datasets with long user interaction histories.
- Abstract(参考訳): 逐次リコメンデータシステムは、RNNやアテンションといった様々なオペレータとのユーザ行動モデリングを通じて、ユーザの次のインタラクションを予測することを目的としている。
しかし、既存のモデルは、トレーニング効率、低コストの推論、強力なパフォーマンスといった、逐次推薦のための3つの黄金の原則を同時に達成できないのが一般的である。
この目的のために,3つの原理の不可能な三角形を達成するために,振る舞い依存線形リカレントユニットに基づく効率的なシーケンスレコメンデーションモデルRecBLRを提案する。
ゲーティング機構と行動依存設計を線形リカレントユニットに組み込むことで,ユーザの行動モデリングとレコメンデーション性能を大幅に向上させる。
さらに、CUDAカーネルをカスタマイズしたハードウェア対応スキャン高速化アルゴリズムを設計することにより、並列化可能なトレーニングと推論効率を解放する。
RecBLRは、3つの黄金の原則 – 強力なレコメンデーションパフォーマンス、トレーニング効率、低コスト推論 – を同時に達成し、長いユーザインタラクション履歴を持つデータセットに優れたスケーラビリティを示す。
関連論文リスト
- Sequential Recommendation via Adaptive Robust Attention with Multi-dimensional Embeddings [7.207685588038045]
逐次レコメンデーションモデルは自己認識機構を用いて最先端のパフォーマンスを達成した。
アイテムIDと位置埋め込みのみの使用を超えて移動すると、次の項目を予測するときにかなりの精度が向上する。
モデルの頑健さと一般化を改善するため,レイヤワイドノイズインジェクション(LNI)正則化を用いたミックスアテンション機構を導入する。
論文 参考訳(メタデータ) (2024-09-08T08:27:22Z) - Denoising Pre-Training and Customized Prompt Learning for Efficient Multi-Behavior Sequential Recommendation [69.60321475454843]
マルチビヘイビアシークエンシャルレコメンデーションに適した,最初の事前学習および迅速な学習パラダイムであるDPCPLを提案する。
事前学習段階において,複数の時間スケールでノイズを除去する新しい行動マイナ (EBM) を提案する。
次に,提案するCustomized Prompt Learning (CPL)モジュールを用いて,事前学習したモデルを高効率にチューニングすることを提案する。
論文 参考訳(メタデータ) (2024-08-21T06:48:38Z) - DRDT: Dynamic Reflection with Divergent Thinking for LLM-based
Sequential Recommendation [53.62727171363384]
進化的思考を伴う動的反射(Dynamic Reflection with Divergent Thinking)という新しい推論原理を導入する。
我々の方法論はダイナミックリフレクション(動的リフレクション)であり、探索、批評、反射を通じて人間の学習をエミュレートするプロセスである。
6つの事前学習 LLM を用いた3つのデータセットに対するアプローチの評価を行った。
論文 参考訳(メタデータ) (2023-12-18T16:41:22Z) - Dynamic Iterative Refinement for Efficient 3D Hand Pose Estimation [87.54604263202941]
本稿では,従来の推定値の修正に部分的レイヤを反復的に活用する,小さなディープニューラルネットワークを提案する。
学習したゲーティング基準を用いて、ウェイトシェアリングループから抜け出すかどうかを判断し、モデルにサンプルごとの適応を可能にする。
提案手法は,広く使用されているベンチマークの精度と効率の両面から,最先端の2D/3Dハンドポーズ推定手法より一貫して優れている。
論文 参考訳(メタデータ) (2021-11-11T23:31:34Z) - Learning Dual Dynamic Representations on Time-Sliced User-Item
Interaction Graphs for Sequential Recommendation [62.30552176649873]
シーケンシャルレコメンデーションのための動的表現学習モデル(DRL-SRe)を考案する。
両面から動的に特徴付けるためのユーザ・イテム相互作用をモデル化するため,提案モデルでは,時間スライス毎にグローバルなユーザ・イテム相互作用グラフを構築した。
モデルが微粒な時間情報を捕捉することを可能にするため,連続時間スライス上での補助的時間予測タスクを提案する。
論文 参考訳(メタデータ) (2021-09-24T07:44:27Z) - Contrastive Self-supervised Sequential Recommendation with Robust
Augmentation [101.25762166231904]
Sequential Recommendation Describes a set of technique to model dynamic user behavior to order to predict future interaction in sequence user data。
データスパーシリティやノイズの多いデータなど、古くて新しい問題はまだ残っている。
逐次レコメンデーション(CoSeRec)のためのコントラスト型自己監督学習を提案する。
論文 参考訳(メタデータ) (2021-08-14T07:15:25Z) - Sequence Adaptation via Reinforcement Learning in Recommender Systems [8.909115457491522]
そこで我々は,SARモデルを提案する。SARモデルは,ユーザとイテムの相互作用のシーケンス長をパーソナライズされた方法で調整する。
さらに,逐次レコメンデーションの精度を批評家ネットワークの予測累積報酬と整合させるために,共同損失関数を最適化する。
実世界の4つのデータセットに対する実験的な評価は,提案モデルがいくつかのベースラインアプローチよりも優れていることを示す。
論文 参考訳(メタデータ) (2021-07-31T13:56:46Z) - S^3-Rec: Self-Supervised Learning for Sequential Recommendation with
Mutual Information Maximization [104.87483578308526]
本稿では,シーケンスレコメンデーションのための自己改善学習のためのモデルS3-Recを提案する。
そこで本稿では,属性,項目,サブシーケンス,シーケンス間の相関関係を学習するために,4つの補助的自己教師対象を考案する。
6つの実世界のデータセットで実施された大規模な実験は、既存の最先端手法よりも提案手法が優れていることを示す。
論文 参考訳(メタデータ) (2020-08-18T11:44:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。