論文の概要: deepstruct -- linking deep learning and graph theory
- arxiv url: http://arxiv.org/abs/2111.06679v1
- Date: Fri, 12 Nov 2021 11:58:13 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-15 13:26:11.058825
- Title: deepstruct -- linking deep learning and graph theory
- Title(参考訳): Deepstruct -- ディープラーニングとグラフ理論をリンクする
- Authors: Julian Stier and Michael Granitzer
- Abstract要約: 深層構造は 深層学習モデルと グラフ理論を結びつけます
Deepstructは、初期グラフに基づいて作成可能なさまざまな制限を備えたディープニューラルネットワークモデルを提供する。
- 参考スコア(独自算出の注目度): 1.4504054468850667
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: deepstruct connects deep learning models and graph theory such that different
graph structures can be imposed on neural networks or graph structures can be
extracted from trained neural network models. For this, deepstruct provides
deep neural network models with different restrictions which can be created
based on an initial graph. Further, tools to extract graph structures from
trained models are available. This step of extracting graphs can be
computationally expensive even for models of just a few dozen thousand
parameters and poses a challenging problem.
deepstruct supports research in pruning, neural architecture search,
automated network design and structure analysis of neural networks.
- Abstract(参考訳): deepstructはディープラーニングモデルとグラフ理論を結び、異なるグラフ構造をニューラルネットワークに課したり、トレーニングされたニューラルネットワークモデルからグラフ構造を抽出することができる。
そのため、deepstructは、初期グラフに基づいて作成可能な、異なる制限を持つディープニューラルネットワークモデルを提供する。
さらに、トレーニングされたモデルからグラフ構造を抽出するツールも利用可能である。
グラフを抽出するこのステップは、わずか数十のパラメータのモデルであっても計算コストが高く、難しい問題を引き起こす。
deepstructは、プルーニング、ニューラルアーキテクチャ検索、自動ネットワーク設計、ニューラルネットワークの構造解析の研究をサポートする。
関連論文リスト
- Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - Neural Architecture Retrieval [27.063268631346713]
我々は、クエリニューラルアーキテクチャに似た設計で既存のニューラルアーキテクチャの集合を検索するニューラルアーキテクチャ検索という新しい問題を定義する。
既存のグラフ事前学習戦略は、グラフのサイズとモチーフのため、ニューラルネットワークの計算グラフに対処できない。
正確なグラフ表現学習を実現するために,マルチレベルコントラスト学習を導入する。
論文 参考訳(メタデータ) (2023-07-16T01:56:41Z) - Neuro-symbolic computing with spiking neural networks [0.6035125735474387]
我々は、スパイクベースのグラフアルゴリズムに関するこれまでの研究を、スパイクニューロンを用いてシンボリックおよびマルチリレーショナル情報をエンコードする方法を実証することによって拡張した。
導入されたフレームワークは、グラフ埋め込みパラダイムと、エラーバックプロパゲーションを用いたスパイクニューラルネットワークのトレーニングの最近の進歩を組み合わせることで実現されている。
論文 参考訳(メタデータ) (2022-08-04T10:49:34Z) - Contrastive Brain Network Learning via Hierarchical Signed Graph Pooling
Model [64.29487107585665]
脳機能ネットワーク上のグラフ表現学習技術は、臨床表現型および神経変性疾患のための新しいバイオマーカーの発見を容易にする。
本稿では,脳機能ネットワークからグラフレベル表現を抽出する階層型グラフ表現学習モデルを提案する。
また、モデルの性能をさらに向上させるために、機能的脳ネットワークデータをコントラスト学習のために拡張する新たな戦略を提案する。
論文 参考訳(メタデータ) (2022-07-14T20:03:52Z) - Machine learning of percolation models using graph convolutional neural
networks [1.0499611180329804]
機械学習手法によるパーコレーション閾値の予測は依然として困難である。
我々は、教師なしと教師なしの両方の方法でパーコレーションを研究するために、強力なグラフ畳み込みニューラルネットワークを構築します。
論文 参考訳(メタデータ) (2022-07-07T15:17:40Z) - Hyperbolic Graph Neural Networks: A Review of Methods and Applications [55.5502008501764]
グラフニューラルネットワークは、従来のニューラルネットワークをグラフ構造化データに一般化する。
グラフ関連学習におけるユークリッドモデルの性能は、ユークリッド幾何学の表現能力によって依然として制限されている。
近年,木のような構造を持つグラフデータ処理や,ゆるい分布の処理において,双曲空間が人気が高まっている。
論文 参考訳(メタデータ) (2022-02-28T15:08:48Z) - Learning through structure: towards deep neuromorphic knowledge graph
embeddings [0.5906031288935515]
本稿では,知識グラフ推論のための深層グラフ学習アーキテクチャをニューロモルフィックアーキテクチャにマッピングする戦略を提案する。
ランダムかつ未学習のグラフニューラルネットワークが局所的なグラフ構造を保存することができるという知見に基づいて、凍結したニューラルネットワークの浅い知識グラフ埋め込みモデルを構成する。
我々は,従来型のハードウェア上では,性能水準を維持しながら,高速化とメモリの大幅な削減を実現していることを示す。
論文 参考訳(メタデータ) (2021-09-21T18:01:04Z) - Graph Structure of Neural Networks [104.33754950606298]
ニューラルネットワークのグラフ構造が予測性能にどのように影響するかを示す。
リレーショナルグラフの"スイートスポット"は、予測性能を大幅に改善したニューラルネットワークにつながる。
トップパフォーマンスニューラルネットワークは、実際の生物学的ニューラルネットワークと驚くほどよく似たグラフ構造を持つ。
論文 参考訳(メタデータ) (2020-07-13T17:59:31Z) - Neural networks adapting to datasets: learning network size and topology [77.34726150561087]
ニューラルネットワークは、勾配に基づくトレーニングの過程で、そのサイズとトポロジの両方を学習できるフレキシブルなセットアップを導入します。
結果として得られるネットワークは、特定の学習タスクとデータセットに合わせたグラフの構造を持つ。
論文 参考訳(メタデータ) (2020-06-22T12:46:44Z) - Hcore-Init: Neural Network Initialization based on Graph Degeneracy [22.923756039561194]
ディープラーニングアーキテクチャから抽出した全重み付きマルチパートグラフに対して,kコア構造の適応版を提案する。
多部グラフは双部グラフの組合せであり、ハイパーグラフの入射グラフであるので、k-ハイパーコア分解を設計する。
論文 参考訳(メタデータ) (2020-04-16T12:57:14Z) - Analyzing Neural Networks Based on Random Graphs [77.34726150561087]
様々なタイプのランダムグラフに対応するアーキテクチャを用いて,ニューラルネットワークの大規模評価を行う。
古典的な数値グラフ不変量は、それ自体が最良のネットワークを選び出すことができない。
また、主に短距離接続を持つネットワークは、多くの長距離接続が可能なネットワークよりも性能が良いことも見出した。
論文 参考訳(メタデータ) (2020-02-19T11:04:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。