ADCB: An Alzheimer's disease benchmark for evaluating observational
estimators of causal effects
- URL: http://arxiv.org/abs/2111.06811v1
- Date: Fri, 12 Nov 2021 16:43:14 GMT
- Title: ADCB: An Alzheimer's disease benchmark for evaluating observational
estimators of causal effects
- Authors: Newton Mwai Kinyanjui, Fredrik D. Johansson
- Abstract summary: We propose a simulator of Alzheimer's disease aimed at modeling intricacies of healthcare data.
The simulator includes parameters which alter the nature and difficulty of the causal inference tasks.
We use the simulator to compare estimators of average and conditional treatment effects.
- Score: 8.550140109387467
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Simulators make unique benchmarks for causal effect estimation since they do
not rely on unverifiable assumptions or the ability to intervene on real-world
systems, but are often too simple to capture important aspects of real
applications. We propose a simulator of Alzheimer's disease aimed at modeling
intricacies of healthcare data while enabling benchmarking of causal effect and
policy estimators. We fit the system to the Alzheimer's Disease Neuroimaging
Initiative (ADNI) dataset and ground hand-crafted components in results from
comparative treatment trials and observational treatment patterns. The
simulator includes parameters which alter the nature and difficulty of the
causal inference tasks, such as latent variables, effect heterogeneity, length
of observed history, behavior policy and sample size. We use the simulator to
compare estimators of average and conditional treatment effects.
Related papers
- Causal Dynamic Variational Autoencoder for Counterfactual Regression in
Longitudinal Data [3.662229789022107]
Estimating treatment effects over time is relevant in many real-world applications, such as precision medicine, epidemiology, economy, and marketing.
We take a different perspective by assuming unobserved risk factors, i.e., adjustment variables that affect only the sequence of outcomes.
We address the challenges posed by time-varying effects and unobserved adjustment variables.
arXiv Detail & Related papers (2023-10-16T16:32:35Z) - Efficient estimation of weighted cumulative treatment effects by
double/debiased machine learning [3.086361225427304]
We propose a class of one-step cross-fitted double/debiased machine learning estimators for the weighted cumulative causal effect.
We apply the proposed methods to real-world observational data from a UK primary care database to compare the effects of anti-diabetic drugs on cancer outcomes.
arXiv Detail & Related papers (2023-05-03T18:19:18Z) - Data-Driven Estimation of Heterogeneous Treatment Effects [15.140272661540655]
Estimating how a treatment affects different individuals, known as heterogeneous treatment effect estimation, is an important problem in empirical sciences.
We provide a survey of state-of-the-art data-driven methods for heterogeneous treatment effect estimation using machine learning.
arXiv Detail & Related papers (2023-01-16T21:36:49Z) - Heterogeneous Treatment Effect Estimation for Observational Data using
Model-based Forests [0.0]
We propose modifications to model-based forests to address the confounding issue in observational data.
We found that this strategy reduces confounding effects in a simulated study with various outcome distributions.
We demonstrate the practical aspects of HTE estimation for survival and ordinal outcomes by an assessment of the potentially heterogeneous effect of Riluzole on the progress of Amyotrophic Lateral Sclerosis.
arXiv Detail & Related papers (2022-10-06T11:49:39Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
Estimating personalized effects of treatments is a complex, yet pervasive problem.
Recent developments in the machine learning literature on heterogeneous treatment effect estimation gave rise to many sophisticated, but opaque, tools.
We use post-hoc feature importance methods to identify features that influence the model's predictions.
arXiv Detail & Related papers (2022-06-16T17:59:05Z) - SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event
Data [83.50281440043241]
We study the problem of inferring heterogeneous treatment effects from time-to-event data.
We propose a novel deep learning method for treatment-specific hazard estimation based on balancing representations.
arXiv Detail & Related papers (2021-10-26T20:13:17Z) - Efficient Causal Inference from Combined Observational and
Interventional Data through Causal Reductions [68.6505592770171]
Unobserved confounding is one of the main challenges when estimating causal effects.
We propose a novel causal reduction method that replaces an arbitrary number of possibly high-dimensional latent confounders.
We propose a learning algorithm to estimate the parameterized reduced model jointly from observational and interventional data.
arXiv Detail & Related papers (2021-03-08T14:29:07Z) - Predicting Parkinson's Disease with Multimodal Irregularly Collected
Longitudinal Smartphone Data [75.23250968928578]
Parkinsons Disease is a neurological disorder and prevalent in elderly people.
Traditional ways to diagnose the disease rely on in-person subjective clinical evaluations on the quality of a set of activity tests.
We propose a novel time-series based approach to predicting Parkinson's Disease with raw activity test data collected by smartphones in the wild.
arXiv Detail & Related papers (2020-09-25T01:50:15Z) - Estimating Individual Treatment Effects using Non-Parametric Regression
Models: a Review [0.0]
We introduce the setup and the issues related to conducting causal inference with observational or non-fully randomized data.
We develop a unifying taxonomy of the existing state-of-the-art frameworks that allow for individual treatment effects estimation.
We conclude by demonstrating the use of some of the methods on an empirical analysis of the school meal program data.
arXiv Detail & Related papers (2020-09-14T14:26:55Z) - Enabling Counterfactual Survival Analysis with Balanced Representations [64.17342727357618]
Survival data are frequently encountered across diverse medical applications, i.e., drug development, risk profiling, and clinical trials.
We propose a theoretically grounded unified framework for counterfactual inference applicable to survival outcomes.
arXiv Detail & Related papers (2020-06-14T01:15:00Z) - Generalization Bounds and Representation Learning for Estimation of
Potential Outcomes and Causal Effects [61.03579766573421]
We study estimation of individual-level causal effects, such as a single patient's response to alternative medication.
We devise representation learning algorithms that minimize our bound, by regularizing the representation's induced treatment group distance.
We extend these algorithms to simultaneously learn a weighted representation to further reduce treatment group distances.
arXiv Detail & Related papers (2020-01-21T10:16:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.