Heterogeneous Treatment Effect Estimation for Observational Data using
Model-based Forests
- URL: http://arxiv.org/abs/2210.02836v1
- Date: Thu, 6 Oct 2022 11:49:39 GMT
- Title: Heterogeneous Treatment Effect Estimation for Observational Data using
Model-based Forests
- Authors: Susanne Dandl and Andreas Bender and Torsten Hothorn
- Abstract summary: We propose modifications to model-based forests to address the confounding issue in observational data.
We found that this strategy reduces confounding effects in a simulated study with various outcome distributions.
We demonstrate the practical aspects of HTE estimation for survival and ordinal outcomes by an assessment of the potentially heterogeneous effect of Riluzole on the progress of Amyotrophic Lateral Sclerosis.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The estimation of heterogeneous treatment effects (HTEs) has attracted
considerable interest in many disciplines, most prominently in medicine and
economics. Contemporary research has so far primarily focused on continuous and
binary responses where HTEs are traditionally estimated by a linear model,
which allows the estimation of constant or heterogeneous effects even under
certain model misspecifications. More complex models for survival, count, or
ordinal outcomes require stricter assumptions to reliably estimate the
treatment effect. Most importantly, the noncollapsibility issue necessitates
the joint estimation of treatment and prognostic effects. Model-based forests
allow simultaneous estimation of covariate-dependent treatment and prognostic
effects, but only for randomized trials. In this paper, we propose
modifications to model-based forests to address the confounding issue in
observational data. In particular, we evaluate an orthogonalization strategy
originally proposed by Robinson (1988, Econometrica) in the context of
model-based forests targeting HTE estimation in generalized linear models and
transformation models. We found that this strategy reduces confounding effects
in a simulated study with various outcome distributions. We demonstrate the
practical aspects of HTE estimation for survival and ordinal outcomes by an
assessment of the potentially heterogeneous effect of Riluzole on the progress
of Amyotrophic Lateral Sclerosis.
Related papers
- Causal Dynamic Variational Autoencoder for Counterfactual Regression in
Longitudinal Data [3.662229789022107]
Estimating treatment effects over time is relevant in many real-world applications, such as precision medicine, epidemiology, economy, and marketing.
We take a different perspective by assuming unobserved risk factors, i.e., adjustment variables that affect only the sequence of outcomes.
We address the challenges posed by time-varying effects and unobserved adjustment variables.
arXiv Detail & Related papers (2023-10-16T16:32:35Z) - What Makes Forest-Based Heterogeneous Treatment Effect Estimators Work? [1.1050303097572156]
We show that both methods can be understood in terms of the same parameters and confounding assumptions under L2 loss.
In the randomized setting, both approaches performed akin to the new blended versions in a benchmark study.
arXiv Detail & Related papers (2022-06-21T12:45:07Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
Estimating personalized effects of treatments is a complex, yet pervasive problem.
Recent developments in the machine learning literature on heterogeneous treatment effect estimation gave rise to many sophisticated, but opaque, tools.
We use post-hoc feature importance methods to identify features that influence the model's predictions.
arXiv Detail & Related papers (2022-06-16T17:59:05Z) - SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event
Data [83.50281440043241]
We study the problem of inferring heterogeneous treatment effects from time-to-event data.
We propose a novel deep learning method for treatment-specific hazard estimation based on balancing representations.
arXiv Detail & Related papers (2021-10-26T20:13:17Z) - Efficient Causal Inference from Combined Observational and
Interventional Data through Causal Reductions [68.6505592770171]
Unobserved confounding is one of the main challenges when estimating causal effects.
We propose a novel causal reduction method that replaces an arbitrary number of possibly high-dimensional latent confounders.
We propose a learning algorithm to estimate the parameterized reduced model jointly from observational and interventional data.
arXiv Detail & Related papers (2021-03-08T14:29:07Z) - Sparse Bayesian Causal Forests for Heterogeneous Treatment Effects
Estimation [0.0]
This paper develops a sparsity-inducing version of Bayesian Causal Forests.
It is designed to estimate heterogeneous treatment effects using observational data.
arXiv Detail & Related papers (2021-02-12T15:24:50Z) - CDSM -- Casual Inference using Deep Bayesian Dynamic Survival Models [3.9169188005935927]
We have developed a causal dynamic survival model (CDSM) that uses the potential outcomes framework with the Bayesian recurrent sub-networks to estimate the difference in survival curves.
Using simulated survival datasets, CDSM has shown good causal effect estimation performance across scenarios of sample dimension, event rate, confounding and overlapping.
arXiv Detail & Related papers (2021-01-26T09:15:49Z) - Bayesian prognostic covariate adjustment [59.75318183140857]
Historical data about disease outcomes can be integrated into the analysis of clinical trials in many ways.
We build on existing literature that uses prognostic scores from a predictive model to increase the efficiency of treatment effect estimates.
arXiv Detail & Related papers (2020-12-24T05:19:03Z) - STELAR: Spatio-temporal Tensor Factorization with Latent Epidemiological
Regularization [76.57716281104938]
We develop a tensor method to predict the evolution of epidemic trends for many regions simultaneously.
STELAR enables long-term prediction by incorporating latent temporal regularization through a system of discrete-time difference equations.
We conduct experiments using both county- and state-level COVID-19 data and show that our model can identify interesting latent patterns of the epidemic.
arXiv Detail & Related papers (2020-12-08T21:21:47Z) - Estimating heterogeneous survival treatment effect in observational data
using machine learning [9.951103976634407]
Methods for estimating heterogeneous treatment effect in observational data have largely focused on continuous or binary outcomes.
Using flexible machine learning methods in the counterfactual framework is a promising approach to address challenges due to complex individual characteristics.
arXiv Detail & Related papers (2020-08-17T01:02:14Z) - Enabling Counterfactual Survival Analysis with Balanced Representations [64.17342727357618]
Survival data are frequently encountered across diverse medical applications, i.e., drug development, risk profiling, and clinical trials.
We propose a theoretically grounded unified framework for counterfactual inference applicable to survival outcomes.
arXiv Detail & Related papers (2020-06-14T01:15:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.