The channel-spatial attention-based vision transformer network for
automated, accurate prediction of crop nitrogen status from UAV imagery
- URL: http://arxiv.org/abs/2111.06839v1
- Date: Fri, 12 Nov 2021 17:48:44 GMT
- Title: The channel-spatial attention-based vision transformer network for
automated, accurate prediction of crop nitrogen status from UAV imagery
- Authors: Xin Zhang, Liangxiu Han, Tam Sobeih, Lewis Lappin, Mark Lee, Andew
Howard and Aron Kisdi
- Abstract summary: Nitrogen (N) fertiliser is routinely applied by farmers to increase crop yields.
Accurate and timely estimation of N status in crops is crucial to improving cropping systems' economic and environmental sustainability.
Recent advances in remote sensing and machine learning have shown promise in addressing the aforementioned challenges in a non-destructive way.
We propose a novel deep learning framework: a channel-spatial attention-based vision transformer (CSVT) for estimating crop N status from large images collected from a UAV in a wheat field.
- Score: 2.2543220665761026
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Nitrogen (N) fertiliser is routinely applied by farmers to increase crop
yields. At present, farmers often over-apply N fertilizer in some locations or
timepoints because they do not have high-resolution crop N status data. N-use
efficiency can be low, with the remaining N lost to the environment, resulting
in high production costs and environmental pollution. Accurate and timely
estimation of N status in crops is crucial to improving cropping systems'
economic and environmental sustainability. The conventional approaches based on
tissue analysis in the laboratory for estimating N status in plants are time
consuming and destructive. Recent advances in remote sensing and machine
learning have shown promise in addressing the aforementioned challenges in a
non-destructive way. We propose a novel deep learning framework: a
channel-spatial attention-based vision transformer (CSVT) for estimating crop N
status from large images collected from a UAV in a wheat field. Unlike the
existing works, the proposed CSVT introduces a Channel Attention Block (CAB)
and a Spatial Interaction Block (SIB), which allows capturing nonlinear
characteristics of spatial-wise and channel-wise features from UAV digital
aerial imagery, for accurate N status prediction in wheat crops. Moreover,
since acquiring labeled data is time consuming and costly, local-to-global
self-supervised learning is introduced to pre-train the CSVT with extensive
unlabelled data. The proposed CSVT has been compared with the state-of-the-art
models, tested and validated on both testing and independent datasets. The
proposed approach achieved high accuracy (0.96) with good generalizability and
reproducibility for wheat N status estimation.
Related papers
- Gridded Transformer Neural Processes for Large Unstructured Spatio-Temporal Data [47.14384085714576]
We introduce gridded pseudo-tokenPs to handle unstructured observations and a processor containing gridded pseudo-tokens that leverage efficient attention mechanisms.
Our method consistently outperforms a range of strong baselines on various synthetic and real-world regression tasks involving large-scale data.
The real-life experiments are performed on weather data, demonstrating the potential of our approach to bring performance and computational benefits when applied at scale in a weather modelling pipeline.
arXiv Detail & Related papers (2024-10-09T10:00:56Z) - Low-Cost Tree Crown Dieback Estimation Using Deep Learning-Based Segmentation [0.0]
We use an approach based on deep learning and vegetation indices to assess crown dieback from RGB aerial data without the need for expensive instrumentation such as LiDAR.
We obtain high overall segmentation accuracy (mAP: 0.519) without the need for additional technical development of the underlying Mask R-CNN model.
Our findings demonstrate the potential of automated data collection and processing, including the application of deep learning, to improve the coverage, speed and cost of forest dieback monitoring.
arXiv Detail & Related papers (2024-09-12T16:03:56Z) - BonnBeetClouds3D: A Dataset Towards Point Cloud-based Organ-level
Phenotyping of Sugar Beet Plants under Field Conditions [30.27773980916216]
Agricultural production is facing severe challenges in the next decades induced by climate change and the need for sustainability.
Advancements in field management through non-chemical weeding by robots in combination with monitoring of crops by autonomous unmanned aerial vehicles (UAVs) are helpful to address these challenges.
The analysis of plant traits, called phenotyping, is an essential activity in plant breeding, it however involves a great amount of manual labor.
arXiv Detail & Related papers (2023-12-22T14:06:44Z) - Uncovering the Missing Pattern: Unified Framework Towards Trajectory
Imputation and Prediction [60.60223171143206]
Trajectory prediction is a crucial undertaking in understanding entity movement or human behavior from observed sequences.
Current methods often assume that the observed sequences are complete while ignoring the potential for missing values.
This paper presents a unified framework, the Graph-based Conditional Variational Recurrent Neural Network (GC-VRNN), which can perform trajectory imputation and prediction simultaneously.
arXiv Detail & Related papers (2023-03-28T14:27:27Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
We propose a simple, powerful and efficient OOD detection model for GNN-based learning on graphs, which we call GNNSafe.
GNNSafe achieves up to $17.0%$ AUROC improvement over state-of-the-arts and it could serve as simple yet strong baselines in such an under-developed area.
arXiv Detail & Related papers (2023-02-06T16:38:43Z) - Generative models-based data labeling for deep networks regression:
application to seed maturity estimation from UAV multispectral images [3.6868861317674524]
Monitoring seed maturity is an increasing challenge in agriculture due to climate change and more restrictive practices.
Traditional methods are based on limited sampling in the field and analysis in laboratory.
We propose a method for estimating parsley seed maturity using multispectral UAV imagery, with a new approach for automatic data labeling.
arXiv Detail & Related papers (2022-08-09T09:06:51Z) - Potato Crop Stress Identification in Aerial Images using Deep
Learning-based Object Detection [60.83360138070649]
The paper presents an approach for analyzing aerial images of a potato crop using deep neural networks.
The main objective is to demonstrate automated spatial recognition of a healthy versus stressed crop at a plant level.
Experimental validation demonstrated the ability for distinguishing healthy and stressed plants in field images, achieving an average Dice coefficient of 0.74.
arXiv Detail & Related papers (2021-06-14T21:57:40Z) - Detection and Prediction of Nutrient Deficiency Stress using
Longitudinal Aerial Imagery [3.5417999811721677]
Early, precise detection of nutrient deficiency stress (NDS) has key economic as well as environmental impact precision.
We collect sequences of high-resolution aerial imagery and construct semantic segmentation models to detect and predict NDS across the field.
This work contributes to the recent developments in deep learning for remote sensing and agriculture, while addressing a key social challenge with implications for economics and sustainability.
arXiv Detail & Related papers (2020-12-17T15:06:15Z) - Estimating Crop Primary Productivity with Sentinel-2 and Landsat 8 using
Machine Learning Methods Trained with Radiative Transfer Simulations [58.17039841385472]
We take advantage of all parallel developments in mechanistic modeling and satellite data availability for advanced monitoring of crop productivity.
Our model successfully estimates gross primary productivity across a variety of C3 crop types and environmental conditions even though it does not use any local information from the corresponding sites.
This highlights its potential to map crop productivity from new satellite sensors at a global scale with the help of current Earth observation cloud computing platforms.
arXiv Detail & Related papers (2020-12-07T16:23:13Z) - Federated Learning in the Sky: Aerial-Ground Air Quality Sensing
Framework with UAV Swarms [53.38353133198842]
Air quality significantly affects human health, it is increasingly important to accurately and timely predict the Air Quality Index (AQI)
This paper proposes a new federated learning-based aerial-ground air quality sensing framework for fine-grained 3D air quality monitoring and forecasting.
For ground sensing systems, we propose a Graph Convolutional neural network-based Long Short-Term Memory (GC-LSTM) model to achieve accurate, real-time and future AQI inference.
arXiv Detail & Related papers (2020-07-23T13:32:47Z) - UAV and Machine Learning Based Refinement of a Satellite-Driven
Vegetation Index for Precision Agriculture [0.8399688944263843]
This paper presents a novel satellite imagery refinement framework based on a deep learning technique.
It exploits information properly derived from high resolution images acquired by unmanned aerial vehicle (UAV) airborne multispectral sensors.
A vineyard in Serralunga d'Alba (Northern Italy) was chosen as a case study for validation purposes.
arXiv Detail & Related papers (2020-04-29T18:34:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.