Fractional resonances and prethermal states in Floquet systems
- URL: http://arxiv.org/abs/2111.06949v4
- Date: Fri, 23 Sep 2022 15:47:05 GMT
- Title: Fractional resonances and prethermal states in Floquet systems
- Authors: R. Pe\~na, V. M. Bastidas, F. Torres, W. J. Munro, and G. Romero
- Abstract summary: In periodically-driven quantum systems, resonances can induce exotic nonequilibrium behavior and new phases of matter without static analog.
We report on the emergence of fractional and integer resonances in a broad class of many-body Hamiltonians with a modulated hopping with a frequency that is either a fraction or an integer of the on-site interaction.
Our findings reveal novel features of the nonequilibrium quantum many-body system, such as the coexistence of Floquet prethermalization and localization.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In periodically-driven quantum systems, resonances can induce exotic
nonequilibrium behavior and new phases of matter without static analog. We
report on the emergence of fractional and integer resonances in a broad class
of many-body Hamiltonians with a modulated hopping with a frequency that is
either a fraction or an integer of the on-site interaction. We contend that
there is a fundamental difference between these resonances when interactions
bring the system to a Floquet prethermal state. Second-order processes dominate
the dynamics in the fractional resonance case, leading to less entanglement and
more localized quantum states than in the integer resonance case dominated by
first-order processes. We demonstrate the dominating emergence of fractional
resonances using the Magnus expansion of the effective Hamiltonian and quantify
their effects on the many-body dynamics via quantum states' von Neumann entropy
and Loschmidt echo. Our findings reveal novel features of the nonequilibrium
quantum many-body system, such as the coexistence of Floquet prethermalization
and localization, that may allow to development of quantum memories for quantum
technologies and quantum information processing.
Related papers
- Amplification of quantum transfer and quantum ratchet [56.47577824219207]
We study a model of amplification of quantum transfer and making it directed which we call the quantum ratchet model.
The ratchet effect is achieved in the quantum control model with dissipation and sink, where the Hamiltonian depends on vibrations in the energy difference synchronized with transitions between energy levels.
Amplitude and frequency of the oscillating vibron together with the dephasing rate are the parameters of the quantum ratchet which determine its efficiency.
arXiv Detail & Related papers (2023-12-31T14:04:43Z) - Quasi-equilibrium and quantum correlation in an open spin-pair system [0.0]
Quasi-equilibrium states that can be prepared in solids through Nuclear Magnetic Resonance (NMR) techniques are out-of-equilibrium states that slowly relax towards thermodynamic equilibrium with the lattice.
In this work, we use the quantum discord dynamics as a witness of the quantum correlation in this kind of state.
arXiv Detail & Related papers (2023-03-29T04:33:06Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Meson content of entanglement spectra after integrable and nonintegrable
quantum quenches [0.0]
We calculate the time evolution of the lower part of the entanglement spectrum and return rate functions after global quantum quenches in the Ising model.
Our analyses provide a deeper understanding on the role of quantum information quantities for the dynamics of emergent phenomena reminiscent to systems in high-energy physics.
arXiv Detail & Related papers (2022-10-27T18:00:01Z) - Stable many-body resonances in open quantum systems [0.0]
We numerically study the dynamics of a small-scale Bose-Hubbard model that can readily be implemented in existing noisy quantum devices.
Our findings suggest a possible pathway toward a stable nonequilibrium state of matter, with potential applications of quantum memories for quantum information processing.
arXiv Detail & Related papers (2022-09-15T14:08:43Z) - Trapped-Ion Quantum Simulation of Collective Neutrino Oscillations [55.41644538483948]
We study strategies to simulate the coherent collective oscillations of a system of N neutrinos in the two-flavor approximation using quantum computation.
We find that the gate complexity using second order Trotter- Suzuki formulae scales better with system size than with other decomposition methods such as Quantum Signal Processing.
arXiv Detail & Related papers (2022-07-07T09:39:40Z) - From geometry to coherent dissipative dynamics in quantum mechanics [68.8204255655161]
We work out the case of finite-level systems, for which it is shown by means of the corresponding contact master equation.
We describe quantum decays in a 2-level system as coherent and continuous processes.
arXiv Detail & Related papers (2021-07-29T18:27:38Z) - Interaction-driven breakdown of dynamical localization in a kicked
quantum gas [0.0]
Quantum interference can terminate energy growth in a continually kicked system, via a single-particle ergodicity-breaking mechanism known as dynamical localization.
We report the experimental realization of a tunably-interacting kicked quantum rotor ensemble using a Bose-Einstein condensate in a pulsed optical lattice.
Results quantitatively elucidate the dynamical transition to many-body quantum chaos, advance our understanding of quantum anomalous diffusion, and delimit some possibilities for protecting quantum information in interacting systems.
arXiv Detail & Related papers (2021-06-17T17:52:55Z) - Symmetry-resolved dynamical purification in synthetic quantum matter [1.2189422792863447]
We show that symmetry-resolved information spreading is inhibited due to the competition of coherent and incoherent dynamics.
Our work shows that symmetry plays a key role as a magnifying glass to characterize many-body dynamics in open quantum systems.
arXiv Detail & Related papers (2021-01-19T19:01:09Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.