論文の概要: Learning Neural Models for Continuous-Time Sequences
- arxiv url: http://arxiv.org/abs/2111.07189v1
- Date: Sat, 13 Nov 2021 20:39:15 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-17 12:10:36.862427
- Title: Learning Neural Models for Continuous-Time Sequences
- Title(参考訳): 連続時間系列のための学習ニューラルモデル
- Authors: Vinayak Gupta
- Abstract要約: 連続時間イベントシーケンス(CTES)の特性について検討し、上記の問題を克服するために、堅牢でスケーラブルなニューラルネットワークベースモデルを設計する。
本研究では,MTPPを用いた事象の生成過程をモデル化し,現実世界の幅広い問題に対処する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The large volumes of data generated by human activities such as online
purchases, health records, spatial mobility etc. are stored as a sequence of
events over a continuous time. Learning deep learning methods over such
sequences is a non-trivial task as it involves modeling the ever-increasing
event timestamps, inter-event time gaps, event types, and the influences
between events -- within and across different sequences. This situation is
further exacerbated by the constraints associated with data collection e.g.
limited data, incomplete sequences, privacy restrictions etc. With the research
direction described in this work, we aim to study the properties of
continuous-time event sequences (CTES) and design robust yet scalable neural
network-based models to overcome the aforementioned problems. In this work, we
model the underlying generative distribution of events using marked temporal
point processes (MTPP) to address a wide range of real-world problems.
Moreover, we highlight the efficacy of the proposed approaches over the
state-of-the-art baselines and later report the ongoing research problems.
- Abstract(参考訳): オンライン購入、健康記録、空間移動などの人間の活動によって生成される大量のデータは、連続して連続するイベントのシーケンスとして記憶される。
このようなシーケンス上でディープラーニングの方法を学ぶことは、イベントタイムスタンプ、イベント間時間ギャップ、イベントタイプ、イベント間の影響を、異なるシーケンス内および異なるシーケンス間でモデル化する、非常に簡単なタスクです。
この状況は、制限されたデータ、不完全なシーケンス、プライバシー制限など、データ収集に関連する制約によってさらに悪化する。
本稿では,本研究の方向性として,連続時間イベントシーケンス(cte)の特性を考察し,前述の問題を克服するために頑健でスケーラブルなニューラルネットワークモデルを設計することを目的とする。
本研究では,mtpp(marked temporal point process)を用いてイベントの生成分布をモデル化し,実世界の幅広い問題に対処する。
さらに,最先端のベースラインに対する提案手法の有効性を強調し,今後の研究課題を報告する。
関連論文リスト
- Recent Trends in Modelling the Continuous Time Series using Deep Learning: A Survey [0.18434042562191813]
継続的シリーズは、医療、自動車、エネルギー、金融、モノのインターネット(IoT)など、現代のさまざまな分野において不可欠である。
本稿では、時系列の一般的な問題領域について述べ、連続時系列をモデル化する際の課題について概説する。
論文 参考訳(メタデータ) (2024-09-13T14:19:44Z) - Decoupled Marked Temporal Point Process using Neural Ordinary Differential Equations [14.828081841581296]
MTPP(マークド・テンポラル・ポイント・プロセス)は、イベント・タイム・データの集合である。
近年の研究では、ディープニューラルネットワークを使用してイベントの複雑な時間的依存関係をキャプチャしている。
本稿では,プロセスの特性を異なる事象からの進化的影響の集合に分解する脱結合型MTPPフレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-10T10:15:32Z) - Enhancing Asynchronous Time Series Forecasting with Contrastive
Relational Inference [21.51753838306655]
時間点プロセス(TPP)は、そのようなモデリングの標準的な方法である。
既存のTPPモデルは、イベントの相互作用を明示的にモデル化する代わりに、将来のイベントの条件分布に焦点を当てており、イベント予測の課題を示唆している。
本稿では,ニューラル推論(NRI)を利用して,観測データから動的パターンを同時に学習しながら,相互作用を推論するグラフを学習する手法を提案する。
論文 参考訳(メタデータ) (2023-09-06T09:47:03Z) - Towards Out-of-Distribution Sequential Event Prediction: A Causal
Treatment [72.50906475214457]
シーケンシャルなイベント予測の目標は、一連の歴史的なイベントに基づいて次のイベントを見積もることである。
実際には、次のイベント予測モデルは、一度に収集されたシーケンシャルなデータで訓練される。
文脈固有の表現を学習するための階層的な分岐構造を持つフレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-24T07:54:13Z) - HyperHawkes: Hypernetwork based Neural Temporal Point Process [5.607676459156789]
時間的ポイントプロセスは、連続した時間空間における時間間データのモデリングに不可欠なツールとして機能する。
動的環境における見えないシーケンスから事象を予測することは一般化できない。
ハイパーネットワークベースの時間的ポイントプロセスフレームワークである textitHyperHawkes を提案する。
論文 参考訳(メタデータ) (2022-10-01T07:14:19Z) - Learning Sequence Representations by Non-local Recurrent Neural Memory [61.65105481899744]
教師付きシーケンス表現学習のためのNon-local Recurrent Neural Memory (NRNM)を提案する。
我々のモデルは長距離依存を捉えることができ、潜伏した高レベル特徴を我々のモデルで抽出することができる。
我々のモデルは、これらのシーケンスアプリケーションごとに特別に設計された他の最先端の手法と比較して好意的に比較する。
論文 参考訳(メタデータ) (2022-07-20T07:26:15Z) - Modeling Continuous Time Sequences with Intermittent Observations using
Marked Temporal Point Processes [25.074394338483575]
人間の活動を通じて生成された大量のデータは、連続した時間のイベントのシーケンスとして表現することができる。
これらの連続的なイベントシーケンスに対するディープラーニングモデルは、非自明なタスクである。
本研究では,イベントシーケンスが欠落している場合にMTPPを学習するための新しい教師なしモデルと推論手法を提案する。
論文 参考訳(メタデータ) (2022-06-23T18:23:20Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
マルチスケールアテンション正規化フロー(MANF)と呼ばれる非自己回帰型ディープラーニングモデルを提案する。
我々のモデルは累積誤差の影響を回避し、時間の複雑さを増大させない。
本モデルは,多くの多変量データセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2022-05-16T07:53:42Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
本稿では,データ生成プロセスの根底にある因果構造を素早く識別する能動的介入ターゲット機構を提案する。
本手法は,ランダムな介入ターゲティングと比較して,要求される対話回数を大幅に削減する。
シミュレーションデータから実世界のデータまで,複数のベンチマークにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2021-09-06T13:10:37Z) - Multi-Scale One-Class Recurrent Neural Networks for Discrete Event
Sequence Anomaly Detection [63.825781848587376]
本稿では,離散イベントシーケンス中の異常を検出する1クラスリカレントニューラルネットワークOC4Seqを提案する。
具体的には、OC4Seqは離散イベントシーケンスを遅延空間に埋め込み、異常を容易に検出することができる。
論文 参考訳(メタデータ) (2020-08-31T04:48:22Z) - A Multi-Channel Neural Graphical Event Model with Negative Evidence [76.51278722190607]
イベントデータセットは、タイムライン上で不規則に発生するさまざまなタイプのイベントのシーケンスである。
基礎となる強度関数を推定するために,非パラメトリックディープニューラルネットワーク手法を提案する。
論文 参考訳(メタデータ) (2020-02-21T23:10:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。