論文の概要: Decoding Causality by Fictitious VAR Modeling
- arxiv url: http://arxiv.org/abs/2111.07465v1
- Date: Sun, 14 Nov 2021 22:43:02 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-17 04:42:35.555640
- Title: Decoding Causality by Fictitious VAR Modeling
- Title(参考訳): 架空のVARモデリングによる因果分解
- Authors: Xingwei Hu
- Abstract要約: まず, 虚ベクトル自己回帰モデルを用いて, 因果関係の平衡を設定した。
平衡において、長期の関係はノイズから特定され、突発関係は無視的に0に近い。
また、気候変動に対する因果要因の寄与を推定するためのアプローチも適用する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In modeling multivariate time series for either forecast or policy analysis,
it would be beneficial to have figured out the cause-effect relations within
the data. Regression analysis, however, is generally for correlation relation,
and very few researches have focused on variance analysis for causality
discovery. We first set up an equilibrium for the cause-effect relations using
a fictitious vector autoregressive model. In the equilibrium, long-run
relations are identified from noise, and spurious ones are negligibly close to
zero. The solution, called causality distribution, measures the relative
strength causing the movement of all series or specific affected ones. If a
group of exogenous data affects the others but not vice versa, then, in theory,
the causality distribution for other variables is necessarily zero. The
hypothesis test of zero causality is the rule to decide a variable is
endogenous or not. Our new approach has high accuracy in identifying the true
cause-effect relations among the data in the simulation studies. We also apply
the approach to estimating the causal factors' contribution to climate change.
- Abstract(参考訳): 予測や政策分析のために多変量時系列をモデル化する場合、データ内の因果関係を理解することは有益である。
しかし回帰分析は一般に相関関係のためであり、因果関係発見の分散分析に焦点を当てた研究はほとんどない。
まず, 仮想ベクトル自己回帰モデルを用いて, 原因効果関係の平衡を設定した。
平衡において、長期の関係はノイズから特定され、突発関係は無視的に0に近い。
因果分布と呼ばれるこの解は、全ての級数または特定の影響を受けるものの動きを引き起こす相対的な強度を測定する。
ある外因性データ群が他に影響を与えるが逆ではない場合、理論的には、他の変数の因果分布は必ず 0 である。
ゼロ因果性の仮説テストは、変数が内在的かどうかを決定する規則である。
我々の新しい手法はシミュレーション研究におけるデータ間の真の因果関係の同定に高い精度を持つ。
また,気候変動に対する因果要因の寄与度を推定する手法を適用した。
関連論文リスト
- Hypothesizing Missing Causal Variables with LLMs [55.28678224020973]
我々は、入力が欠落変数を持つ部分因果グラフであるような新しいタスクを定式化し、出力は部分グラフを完成させるための欠落変数に関する仮説である。
原因と効果の間の媒介変数を仮説化するLLMの強い能力を示す。
また,オープンソースモデルの一部がGPT-4モデルより優れているという驚くべき結果も得られた。
論文 参考訳(メタデータ) (2024-09-04T10:37:44Z) - Challenges in Variable Importance Ranking Under Correlation [6.718144470265263]
本稿では,特徴相関が変数重要度評価に与える影響を総合シミュレーションで検討する。
ノックオフ変数と対応する予測変数の間には相関関係は常に存在しないが、相関関係が予測変数間の特定の相関しきい値を超えて線形に増加することを証明している。
論文 参考訳(メタデータ) (2024-02-05T19:02:13Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
本研究では, 因果表現学習, 潜伏因果変数を推定するタスク, およびそれらの変数の混合から因果関係を考察する。
我々のゴールは、根底にある真理潜入者とその因果グラフの両方を、介入データから解決不可能なあいまいさの集合まで識別することである。
論文 参考訳(メタデータ) (2023-06-01T10:51:58Z) - Reinterpreting causal discovery as the task of predicting unobserved
joint statistics [15.088547731564782]
我々は因果発見が、観測されていない関節分布の性質を推測するのに役立つと論じている。
入力が変数のサブセットであり、ラベルがそのサブセットの統計的性質である学習シナリオを定義する。
論文 参考訳(メタデータ) (2023-05-11T15:30:54Z) - Active Bayesian Causal Inference [72.70593653185078]
因果発見と推論を統合するための完全ベイズ能動学習フレームワークであるアクティブベイズ因果推論(ABCI)を提案する。
ABCIは因果関係のモデルと関心のクエリを共同で推論する。
我々のアプローチは、完全な因果グラフの学習のみに焦点を当てた、いくつかのベースラインよりも、よりデータ効率が高いことを示す。
論文 参考訳(メタデータ) (2022-06-04T22:38:57Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
因果機構は構造因果モデルによって記述できる。
最先端の人工知能の大きな欠点の1つは、説明責任の欠如である。
論文 参考訳(メタデータ) (2021-09-06T14:52:58Z) - Discovery of Causal Additive Models in the Presence of Unobserved
Variables [6.670414650224422]
観測されていない変数に影響されたデータからの因果発見は、重要だが解決が難しい問題である。
本研究では,非観測変数に偏らされることなく理論的に同定可能なすべての因果関係を同定する手法を提案する。
論文 参考訳(メタデータ) (2021-06-04T03:28:27Z) - Counterfactual Invariance to Spurious Correlations: Why and How to Pass
Stress Tests [87.60900567941428]
素早い相関」とは、アナリストが重要とすべきでないと考える入力データのある側面に対するモデルの依存である。
機械学習では、これらにはノウ・イ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ」という特徴がある。
因果推論ツールを用いたストレステストについて検討した。
論文 参考訳(メタデータ) (2021-05-31T14:39:38Z) - Latent Causal Invariant Model [128.7508609492542]
現在の教師付き学習は、データ適合プロセス中に急激な相関を学習することができる。
因果予測を求める潜在因果不変モデル(LaCIM)を提案する。
論文 参考訳(メタデータ) (2020-11-04T10:00:27Z) - Estimating Causal Effects with the Neural Autoregressive Density
Estimator [6.59529078336196]
我々は、Pearlのdo-calculusフレームワーク内の因果効果を推定するために、神経自己回帰密度推定器を使用する。
本手法は,変数間の相互作用を明示的にモデル化することなく,非線形システムから因果効果を抽出できることを示す。
論文 参考訳(メタデータ) (2020-08-17T13:12:38Z) - Information-Theoretic Approximation to Causal Models [0.0]
有限標本から2つの確率変数間の因果方向と因果効果を推定する問題の解法が可能であることを示す。
X と Y のサンプルから生じる分布を高次元確率空間に埋め込む。
本稿では, 線形最適化問題を解くことにより, 因果モデル(IACM)に対する情報理論近似が可能であることを示す。
論文 参考訳(メタデータ) (2020-07-29T18:34:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。