論文の概要: An Outcome Test of Discrimination for Ranked Lists
- arxiv url: http://arxiv.org/abs/2111.07889v1
- Date: Mon, 15 Nov 2021 16:42:57 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-08 02:17:03.024029
- Title: An Outcome Test of Discrimination for Ranked Lists
- Title(参考訳): ランク付けリストの識別結果テスト
- Authors: Jonathan Roth, Guillaume Saint-Jacques, YinYin Yu
- Abstract要約: 非差別はモーメントの不等式を意味することを示す。
我々は、インプリケートされた不等式を統計的にテストする方法を示し、LinkedInのデータを用いてアプリケーションにおける我々のアプローチを検証する。
- 参考スコア(独自算出の注目度): 0.18416014644193063
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper extends Becker (1957)'s outcome test of discrimination to settings
where a (human or algorithmic) decision-maker produces a ranked list of
candidates. Ranked lists are particularly relevant in the context of online
platforms that produce search results or feeds, and also arise when human
decisionmakers express ordinal preferences over a list of candidates. We show
that non-discrimination implies a system of moment inequalities, which
intuitively impose that one cannot permute the position of a lower-ranked
candidate from one group with a higher-ranked candidate from a second group and
systematically improve the objective. Moreover, we show that that these moment
inequalities are the only testable implications of non-discrimination when the
auditor observes only outcomes and group membership by rank. We show how to
statistically test the implied inequalities, and validate our approach in an
application using data from LinkedIn.
- Abstract(参考訳): 本稿では、becker (1957) の判別結果テストを、(人間的またはアルゴリズム的)意思決定者が候補のランク付けリストを作成する設定にまで拡張する。
ランク付けされたリストは、検索結果やフィードを生成するオンラインプラットフォームのコンテキストにおいて特に重要であり、人間の意思決定者が候補者のリストよりも規則的な選好を表現するときにも生じる。
非差別はモーメントの不平等のシステムを意味しており、これは直感的に、上位候補を持つ1つのグループから下位候補の位置を減らし、その目的を体系的に改善できないことを示す。
さらに,これらのモーメントの不等式は,監査人が成績とグループメンバーシップのみをランク別に観察する場合に,非差別の唯一の検証可能な意味であることを示す。
意味のある不等式を統計的にテストする方法を示し、linkedinのデータを使ってアプリケーション内のアプローチを検証する。
関連論文リスト
- Stability and Multigroup Fairness in Ranking with Uncertain Predictions [61.76378420347408]
我々の研究はランキング関数について考察している。分類タスクの個々の予測からランキング上の分布へのマップ。
ランキング関数の2つの側面、すなわち予測における摂動に対する安定性と、個人とサブグループの両方に対する公正性に焦点を当てる。
我々の研究は、不確実性に敏感なランキングが、グループと個人レベルの公正性の保証とを自然に補間していることを示している。
論文 参考訳(メタデータ) (2024-02-14T17:17:05Z) - Fairness in Ranking under Disparate Uncertainty [24.401219403555814]
我々は、基礎となる関連モデルの不確実性がオプション群間で異なる場合、ランク付けは不公平をもたらす可能性があると論じる。
ランク付けのための新しい公正基準として平等ランク付け(EOR)を提案する。
異なる不確実性が存在する場合でも、EORは関連する選択肢の中でグループワイドフェア・宝くじに対応していることを示す。
論文 参考訳(メタデータ) (2023-09-04T13:49:48Z) - Bipartite Ranking Fairness through a Model Agnostic Ordering Adjustment [54.179859639868646]
本稿では,二部類ランキングにおける公平性を実現するためのモデルに依存しない後処理フレームワークxOrderを提案する。
xOrderは、教師なしおよび教師なしの公正度メトリックを含む、さまざまな分類モデルとランキングフェアネスメトリクスと互換性がある。
提案アルゴリズムを,4つのベンチマークデータセットと2つの実世界の患者電子健康記録リポジトリ上で評価した。
論文 参考訳(メタデータ) (2023-07-27T07:42:44Z) - Bounding Counterfactuals under Selection Bias [60.55840896782637]
本稿では,識別不能なクエリと識別不能なクエリの両方に対処するアルゴリズムを提案する。
選択バイアスによって引き起こされる欠如にもかかわらず、利用可能なデータの可能性は無限であることを示す。
論文 参考訳(メタデータ) (2022-07-26T10:33:10Z) - Choosing an algorithmic fairness metric for an online marketplace:
Detecting and quantifying algorithmic bias on LinkedIn [0.21756081703275995]
等資格候補に対する等機会の公平性の概念から、アルゴリズム的公正度計量を導出する。
提案手法は、LinkedInが使用している2つのアルゴリズムの性別に関するアルゴリズムバイアスを計測し、定量化する。
論文 参考訳(メタデータ) (2022-02-15T10:33:30Z) - Fair Sequential Selection Using Supervised Learning Models [11.577534539649374]
我々は、連続して到着した応募者が限られた数の位置/ジョブを申請する選択問題を考える。
一般の公正概念を満足する事前学習モデルであっても、選択の結果は特定の人口集団に偏っている可能性があることを示す。
本稿では、連続選択問題に適した「平等選択(ES)」という新たなフェアネス概念を導入し、ESフェアネス概念を満たすための後処理アプローチを提案する。
論文 参考訳(メタデータ) (2021-10-26T19:45:26Z) - Statistical discrimination in learning agents [64.78141757063142]
統計的差別は、訓練人口のバイアスとエージェントアーキテクチャの両方の関数としてエージェントポリシーに現れる。
我々は、リカレントニューラルネットワークを使用するエージェントによる差別の低減と、トレーニング環境のバイアスの低減が示される。
論文 参考訳(メタデータ) (2021-10-21T18:28:57Z) - Social Norm Bias: Residual Harms of Fairness-Aware Algorithms [21.50551404445654]
社会ノームバイアス (Social Norm Bias, SNoB) は、自動意思決定システムによって示される、微妙だが連続的な差別の一種である。
我々は、アルゴリズムの予測が性規範とどのように関連しているかを測定することでSNoBを定量化する。
後処理の介入は、この種のバイアスを全く軽減しないことを示す。
論文 参考訳(メタデータ) (2021-08-25T05:54:56Z) - Auditing for Discrimination in Algorithms Delivering Job Ads [70.02478301291264]
我々は,求人広告配信における識別アルゴリズムのブラックボックス監査のための新しい手法を開発した。
最初のコントリビューションは、性別や人種などの保護されたカテゴリーによる、広告配信における歪の区別です。
第2に,他の要因と資格の違いによって説明可能なスクリューを区別する監査手法を開発する。
第3に、提案手法を求人広告のための2つの主要なターゲット広告プラットフォーム、FacebookとLinkedInに適用する。
論文 参考訳(メタデータ) (2021-04-09T17:38:36Z) - Intersectional Affirmative Action Policies for Top-k Candidates
Selection [3.4961413413444817]
本研究では,トップk候補を応募者のプールから選抜する問題について検討する。
我々は,一部の候補者が歴史的かつ現在の不利を経験している状況を考える。
そこで本研究では,OECD国における学力評価と学士号取得のデータセットを用いて,この問題を解き,解析し,評価する2つのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-07-29T12:27:18Z) - Towards Model-Agnostic Post-Hoc Adjustment for Balancing Ranking
Fairness and Algorithm Utility [54.179859639868646]
Bipartiteランキングは、ラベル付きデータから正の個人よりも上位の個人をランク付けするスコアリング機能を学ぶことを目的としている。
学習したスコアリング機能が、異なる保護グループ間で体系的な格差を引き起こすのではないかという懸念が高まっている。
本稿では、二部構成のランキングシナリオにおいて、それらのバランスをとるためのモデル後処理フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-15T10:08:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。