DRINet++: Efficient Voxel-as-point Point Cloud Segmentation
- URL: http://arxiv.org/abs/2111.08318v1
- Date: Tue, 16 Nov 2021 09:22:15 GMT
- Title: DRINet++: Efficient Voxel-as-point Point Cloud Segmentation
- Authors: Maosheng Ye, Rui Wan, Shuangjie Xu, Tongyi Cao, Qifeng Chen
- Abstract summary: DRINet++ extends DRINet by enhancing the sparsity and geometric properties of a point cloud with a voxel-as-point principle.
Our state-of-the-art outdoor point cloud segmentation achieves convergence and alleviates the memory consumption problem.
- Score: 41.89569852619741
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, many approaches have been proposed through single or multiple
representations to improve the performance of point cloud semantic
segmentation. However, these works do not maintain a good balance among
performance, efficiency, and memory consumption. To address these issues, we
propose DRINet++ that extends DRINet by enhancing the sparsity and geometric
properties of a point cloud with a voxel-as-point principle. To improve
efficiency and performance, DRINet++ mainly consists of two modules: Sparse
Feature Encoder and Sparse Geometry Feature Enhancement. The Sparse Feature
Encoder extracts the local context information for each point, and the Sparse
Geometry Feature Enhancement enhances the geometric properties of a sparse
point cloud via multi-scale sparse projection and attentive multi-scale fusion.
In addition, we propose deep sparse supervision in the training phase to help
convergence and alleviate the memory consumption problem. Our DRINet++ achieves
state-of-the-art outdoor point cloud segmentation on both SemanticKITTI and
Nuscenes datasets while running significantly faster and consuming less memory.
Related papers
- Parameter-Efficient Fine-Tuning in Spectral Domain for Point Cloud Learning [49.91297276176978]
We propose a novel.
Efficient Fine-Tuning (PEFT) method for point cloud, called Point GST.
Point GST freezes the pre-trained model and introduces a trainable Point Cloud Spectral Adapter (PCSA) to finetune parameters in the spectral domain.
Extensive experiments on challenging point cloud datasets demonstrate that Point GST not only outperforms its fully finetuning counterpart but also significantly reduces trainable parameters.
arXiv Detail & Related papers (2024-10-10T17:00:04Z) - PointeNet: A Lightweight Framework for Effective and Efficient Point
Cloud Analysis [28.54939134635978]
PointeNet is a network designed specifically for point cloud analysis.
Our method demonstrates flexibility by seamlessly integrating with a classification/segmentation head or embedding into off-the-shelf 3D object detection networks.
Experiments on object-level datasets, including ModelNet40, ScanObjectNN, ShapeNet KITTI, and the scene-level dataset KITTI, demonstrate the superior performance of PointeNet over state-of-the-art methods in point cloud analysis.
arXiv Detail & Related papers (2023-12-20T03:34:48Z) - Point Cloud Pre-training with Diffusion Models [62.12279263217138]
We propose a novel pre-training method called Point cloud Diffusion pre-training (PointDif)
PointDif achieves substantial improvement across various real-world datasets for diverse downstream tasks such as classification, segmentation and detection.
arXiv Detail & Related papers (2023-11-25T08:10:05Z) - Few-Shot 3D Point Cloud Semantic Segmentation via Stratified
Class-Specific Attention Based Transformer Network [22.9434434107516]
We develop a new multi-layer transformer network for few-shot point cloud semantic segmentation.
Our method achieves the new state-of-the-art performance, with 15% less inference time, over existing few-shot 3D point cloud segmentation models.
arXiv Detail & Related papers (2023-03-28T00:27:54Z) - CloudAttention: Efficient Multi-Scale Attention Scheme For 3D Point
Cloud Learning [81.85951026033787]
We set transformers in this work and incorporate them into a hierarchical framework for shape classification and part and scene segmentation.
We also compute efficient and dynamic global cross attentions by leveraging sampling and grouping at each iteration.
The proposed hierarchical model achieves state-of-the-art shape classification in mean accuracy and yields results on par with the previous segmentation methods.
arXiv Detail & Related papers (2022-07-31T21:39:15Z) - Attribute Artifacts Removal for Geometry-based Point Cloud Compression [43.60640890971367]
Geometry-based point cloud compression (G-PCC) can achieve remarkable compression efficiency for point clouds.
It still leads to serious attribute compression artifacts, especially under low scenarios.
We propose a Multi-Scale Graph Attention Network (MSGAT) to remove the artifacts of point cloud attributes.
arXiv Detail & Related papers (2021-12-01T15:21:06Z) - DRINet: A Dual-Representation Iterative Learning Network for Point Cloud
Segmentation [45.768040873409824]
DRINet serves as the basic network structure for dual-representation learning.
Our network achieves state-of-the-art results for point cloud classification and segmentation tasks.
For large-scale outdoor scenarios, our method outperforms state-of-the-art methods with a real-time inference speed of 62ms per frame.
arXiv Detail & Related papers (2021-08-09T13:23:54Z) - Learning Semantic Segmentation of Large-Scale Point Clouds with Random
Sampling [52.464516118826765]
We introduce RandLA-Net, an efficient and lightweight neural architecture to infer per-point semantics for large-scale point clouds.
The key to our approach is to use random point sampling instead of more complex point selection approaches.
Our RandLA-Net can process 1 million points in a single pass up to 200x faster than existing approaches.
arXiv Detail & Related papers (2021-07-06T05:08:34Z) - MNEW: Multi-domain Neighborhood Embedding and Weighting for Sparse Point
Clouds Segmentation [1.2380933178502298]
We propose MNEW, including multi-domain neighborhood embedding, and attention weighting based on their geometry distance, feature similarity, and neighborhood sparsity.
MNEW achieves the top performance for sparse point clouds, which is important to the application of LiDAR-based automated driving perception.
arXiv Detail & Related papers (2020-04-05T18:02:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.