論文の概要: Mathematical Models for Local Sensing Hashes
- arxiv url: http://arxiv.org/abs/2111.08344v1
- Date: Tue, 16 Nov 2021 10:40:55 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-17 23:58:04.534260
- Title: Mathematical Models for Local Sensing Hashes
- Title(参考訳): 局所センシングハッシュの数学的モデル
- Authors: Li Wang, Lilon Wangner
- Abstract要約: 近似インデックス構造は,クラスタリングと外乱検出の近傍探索を高速化する好機であることを示す。
局所センシングハッシュの特性を数学的にモデル化する方向を示す。
- 参考スコア(独自算出の注目度): 7.400475825464313
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: As data volumes continue to grow, searches in data are becoming increasingly
time-consuming. Classical index structures for neighbor search are no longer
sustainable due to the "curse of dimensionality". Instead, approximated index
structures offer a good opportunity to significantly accelerate the neighbor
search for clustering and outlier detection and to have the lowest possible
error rate in the results of the algorithms. Local sensing hashes is one of
those. We indicate directions to mathematically model the properties of it.
- Abstract(参考訳): データ量が増え続けるにつれ、データの検索はますます時間がかかりつつある。
近隣探索のための古典的な索引構造は「次元の曲線」のためにもはや持続可能ではない。
その代わり、近似インデックス構造は、クラスタリングと異常検出の隣接探索を著しく加速し、アルゴリズムの結果において最も低い誤差率を持つ良い機会を提供する。
ローカルセンシングハッシュはその1つである。
我々はその特性を数学的にモデル化する方向を示す。
関連論文リスト
- Discovering Data Structures: Nearest Neighbor Search and Beyond [18.774836778996544]
データ構造をエンド・ツー・エンドで学習するための一般的なフレームワークを提案する。
我々のフレームワークは、基礎となるデータ分布に適応し、クエリと空間の複雑さをきめ細やかな制御を提供する。
まず、この枠組みを近接探索問題に適用する。
論文 参考訳(メタデータ) (2024-11-05T16:50:54Z) - Operational Advice for Dense and Sparse Retrievers: HNSW, Flat, or Inverted Indexes? [62.57689536630933]
本稿では,オープンソースのLucene検索ライブラリを用いたBEIRデータセットの実験結果について述べる。
本研究は,高密度かつ疎密なレトリバーの設計空間を理解するための,今日の検索実践者へのガイダンスを提供する。
論文 参考訳(メタデータ) (2024-09-10T12:46:23Z) - Score matching enables causal discovery of nonlinear additive noise
models [63.93669924730725]
次世代のスケーラブル因果発見手法の設計方法について述べる。
本稿では,スコアのヤコビアンを効率的に近似し,因果グラフを復元する手法を提案する。
論文 参考訳(メタデータ) (2022-03-08T21:34:46Z) - Probabilistic DAG Search [29.47649645431227]
探索空間の潜伏構造を利用して探索木間で情報を共有するための確率的フレームワークを開発する。
我々は、Tic-Tac-Toeの既存の非確率的代替品と特徴選択アプリケーションとを比較検討するアルゴリズムを実証的に見出した。
論文 参考訳(メタデータ) (2021-06-16T11:35:19Z) - Towards a Model for LSH [7.400475825464313]
クラスタリングと外れ値検出アルゴリズムは、ますます時間がかかりつつある。
近似インデックス構造がクラスタリングと外乱検出の近傍探索を加速する好機であることを示す。
論文 参考訳(メタデータ) (2021-05-11T15:39:55Z) - BR-NS: an Archive-less Approach to Novelty Search [70.13948372218849]
行動認識に基づく新規性探索(BR-NS)という,新規性推定の代替手法について議論する。
BR-NSはアーカイブを必要とせず、行動空間で定義できるメトリクスを前提にせず、近隣の検索に依存しません。
我々は、その実現可能性とダイナミクス、および時間複雑性の観点からアーカイブベースのnsよりも潜在的に有利な点について洞察を得るために実験を行う。
論文 参考訳(メタデータ) (2021-04-08T17:31:34Z) - Adversarial Examples for $k$-Nearest Neighbor Classifiers Based on
Higher-Order Voronoi Diagrams [69.4411417775822]
逆例は機械学習モデルにおいて広く研究されている現象である。
そこで本研究では,$k$-nearest 近傍分類の逆ロバスト性を評価するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-11-19T08:49:10Z) - The Case for Learned Spatial Indexes [62.88514422115702]
我々は、空間範囲の問合せに答えるために、最先端の学習した多次元インデックス構造(すなわちFlood)から提案した手法を用いる。
i) パーティション内の機械学習検索は、1次元でフィルタリングを使用する場合の2進探索よりも11.79%速く、39.51%高速であることを示す。
また、2次元でフィルタする最も近い競合相手の1.23倍から1.83倍の速さで機械学習インデックスを精査する。
論文 参考訳(メタデータ) (2020-08-24T12:09:55Z) - A Practical Index Structure Supporting Fr\'echet Proximity Queries Among
Trajectories [1.9335262420787858]
我々は、計算コストの高いメトリクスの下で、レンジと近隣クエリに$k$のスケーラブルなアプローチを提案する。
計量指標のクラスタリングに基づいて,軌跡数に線形な木構造を求める。
本研究では,多種多様な合成および実世界のデータセットに関する広範な実験により,本手法の有効性と有効性について分析する。
論文 参考訳(メタデータ) (2020-05-28T04:12:43Z) - Learning to Accelerate Heuristic Searching for Large-Scale Maximum
Weighted b-Matching Problems in Online Advertising [51.97494906131859]
バイパルタイトbマッチングはアルゴリズム設計の基本であり、経済市場や労働市場などに広く適用されている。
既存の正確で近似的なアルゴリズムは、通常そのような設定で失敗する。
我々は、以前の事例から学んだ知識を活用して、新しい問題インスタンスを解決するtextttNeuSearcherを提案する。
論文 参考訳(メタデータ) (2020-05-09T02:48:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。