論文の概要: Probabilistic DAG Search
- arxiv url: http://arxiv.org/abs/2106.08717v1
- Date: Wed, 16 Jun 2021 11:35:19 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-18 02:37:00.718630
- Title: Probabilistic DAG Search
- Title(参考訳): 確率的DAG探索
- Authors: Julia Grosse, Cheng Zhang, Philipp Hennig
- Abstract要約: 探索空間の潜伏構造を利用して探索木間で情報を共有するための確率的フレームワークを開発する。
我々は、Tic-Tac-Toeの既存の非確率的代替品と特徴選択アプリケーションとを比較検討するアルゴリズムを実証的に見出した。
- 参考スコア(独自算出の注目度): 29.47649645431227
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Exciting contemporary machine learning problems have recently been phrased in
the classic formalism of tree search -- most famously, the game of Go.
Interestingly, the state-space underlying these sequential decision-making
problems often posses a more general latent structure than can be captured by a
tree. In this work, we develop a probabilistic framework to exploit a search
space's latent structure and thereby share information across the search tree.
The method is based on a combination of approximate inference in jointly
Gaussian models for the explored part of the problem, and an abstraction for
the unexplored part that imposes a reduction of complexity ad hoc. We
empirically find our algorithm to compare favorably to existing
non-probabilistic alternatives in Tic-Tac-Toe and a feature selection
application.
- Abstract(参考訳): 現代の機械学習のエキサイティングな問題は、最近は木探索の古典的な形式化で表現されている。
興味深いことに、これらのシーケンシャルな意思決定問題の根底にある状態空間は、しばしば木によって捉えられるよりも一般的な潜在構造を持つ。
本研究では,探索空間の潜在構造を利用して探索木間で情報を共有するための確率的フレームワークを開発する。
本手法は,問題の探索的部分に対するgaussianモデルによる近似推論と,複雑性の軽減を強制する未探索部分の抽象化を組み合わせたものである。
我々は、Tic-Tac-Toeの既存の非確率的代替品と特徴選択アプリケーションとを比較検討するアルゴリズムを実証的に見出した。
関連論文リスト
- Posets and Bounded Probabilities for Discovering Order-inducing Features in Event Knowledge Graphs [6.96958458974878]
イベント知識グラフ(EKG)は、プロセス実行の複数の対話的なビューをキャプチャする。
未処理データからのEKG発見のオープンな問題に対処する。
統計的推測に基づくEKG探索アルゴリズムを導出する。
論文 参考訳(メタデータ) (2024-10-08T14:12:51Z) - Tree Search in DAG Space with Model-based Reinforcement Learning for
Causal Discovery [6.772856304452474]
CD-UCTは木探索に基づく因果探索のためのモデルに基づく強化学習手法である。
我々は、サイクルを導入するエッジを排除するための効率的なアルゴリズムの正しさを形式化し、証明する。
提案手法は離散確率変数と連続確率変数の両方を持つ因果ベイズネットワークに広く適用することができる。
論文 参考訳(メタデータ) (2023-10-20T15:14:18Z) - Amortized Inference for Causal Structure Learning [72.84105256353801]
因果構造を学習することは、通常、スコアまたは独立テストを使用して構造を評価することを伴う探索問題を引き起こす。
本研究では,観測・干渉データから因果構造を予測するため,変分推論モデルを訓練する。
我々のモデルは、実質的な分布シフトの下で頑健な一般化能力を示す。
論文 参考訳(メタデータ) (2022-05-25T17:37:08Z) - CITS: Coherent Ising Tree Search Algorithm Towards Solving Combinatorial
Optimization Problems [0.0]
本稿では、マルコフ連鎖からSAに基づく奥行き制限木への探索空間の拡大による探索アルゴリズムを提案する。
それぞれのイテレーションにおいて、このアルゴリズムは、先を見据えて、木に沿って探索することで、実現可能な探索空間内で最高の準最適解を選択する」。
以上の結果から,IsingのNP最適化問題に対する高次木探索戦略は,より少ないエポックの範囲で解決可能であることが示唆された。
論文 参考訳(メタデータ) (2022-03-09T10:07:26Z) - Frequent Itemset-driven Search for Finding Minimum Node Separators in
Complex Networks [61.2383572324176]
本稿では,データマイニングにおける頻繁なアイテムセットマイニングの概念をよく知られたメメティック検索フレームワークに統合する,頻繁なアイテムセット駆動探索手法を提案する。
頻繁なアイテムセット組換え演算子を反復的に使用して、高品質なソリューションで頻繁に発生するアイテムセットに基づいた有望な子孫ソリューションを生成する。
特に、29個の新しい上界を発見し、以前の18個の最もよく知られた境界と一致する。
論文 参考訳(メタデータ) (2022-01-18T11:16:40Z) - Exploring Complicated Search Spaces with Interleaving-Free Sampling [127.07551427957362]
本稿では,長距離接続を伴う複雑な検索空間上に探索アルゴリズムを構築する。
我々はtextbfIF-NAS という単純なアルゴリズムを提案し、異なるサブネットワークを構築するために周期的なサンプリング戦略を実行する。
提案した探索空間において、IF-NASはランダムサンプリングと従来の重み付け検索のアルゴリズムを有意差で上回っている。
論文 参考訳(メタデータ) (2021-12-05T06:42:48Z) - BR-NS: an Archive-less Approach to Novelty Search [70.13948372218849]
行動認識に基づく新規性探索(BR-NS)という,新規性推定の代替手法について議論する。
BR-NSはアーカイブを必要とせず、行動空間で定義できるメトリクスを前提にせず、近隣の検索に依存しません。
我々は、その実現可能性とダイナミクス、および時間複雑性の観点からアーカイブベースのnsよりも潜在的に有利な点について洞察を得るために実験を行う。
論文 参考訳(メタデータ) (2021-04-08T17:31:34Z) - Decomposable Families of Itemsets [0.949290364986276]
本稿では,より大規模な項目集合から,パターンの小型かつ高品質なサブセットを選択するという問題に対するアプローチを提案する。
このようなアイテムセットファミリーは、元のアイテムセットのコレクションが導出されたデータに対する確率モデルを定義する。
我々は、分解可能なアイテムセットファミリを構築するための効率的なアルゴリズムを提供し、周波数バウンドクエリによるアプリケーションの例を示す。
論文 参考訳(メタデータ) (2020-06-16T21:52:28Z) - Learning to Accelerate Heuristic Searching for Large-Scale Maximum
Weighted b-Matching Problems in Online Advertising [51.97494906131859]
バイパルタイトbマッチングはアルゴリズム設計の基本であり、経済市場や労働市場などに広く適用されている。
既存の正確で近似的なアルゴリズムは、通常そのような設定で失敗する。
我々は、以前の事例から学んだ知識を活用して、新しい問題インスタンスを解決するtextttNeuSearcherを提案する。
論文 参考訳(メタデータ) (2020-05-09T02:48:23Z) - Parameterizing Branch-and-Bound Search Trees to Learn Branching Policies [76.83991682238666]
Branch and Bound (B&B) は、Mixed-Integer Linear Programming Problem (MILP) の解法として一般的に用いられる木探索法である。
本稿では,新しい模倣学習フレームワークを提案し,分岐を表現するための新しい入力機能とアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-02-12T17:43:23Z) - Parameterized Complexity Analysis of Randomized Search Heuristics [16.759797540118665]
この章では、ランダム化アルゴリズムのパラメータ化実行時間解析の理論を適用した多数の結果をまとめた。
NP-hard最適化問題の解法を課題とするランダム化検索の集合に対する主な結果と証明手法について概説する。
論文 参考訳(メタデータ) (2020-01-15T03:43:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。