Revealing the ultra-sensitive calorimetric properties of
supercon-ducting magic-angle twisted bilayer graphene
- URL: http://arxiv.org/abs/2111.08735v1
- Date: Tue, 16 Nov 2021 19:13:20 GMT
- Title: Revealing the ultra-sensitive calorimetric properties of
supercon-ducting magic-angle twisted bilayer graphene
- Authors: G. Di Battista, P. Seifert, K. Watanabe, T. Taniguchi, K.C. Fong, A.
Principi and D. K. Efetov
- Abstract summary: superconducting phase of magic-angle twisted bilayer graphene (MATBG)1 has been predicted to possess extraordinary thermal properties.
We reveal the ultra-sensitive calorimetric properties of a superconducting MATBG device, by monitoring its temperature dependent critical current Ic.
This establishes superconducting MATBG as a revolutionizing active material for ultra-sensitive photon-detection applications.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The allegedly unconventional superconducting phase of magic-angle twisted
bilayer graphene (MATBG)1 has been predicted to possess extraordinary thermal
properties, as it is formed from a highly diluted electron ensemble with both a
record-low carrier density n ~ 10^11 cm-2 and electronic heat capacity Ce < 100
kB. While these attributes position MATBG as a ground-breaking material
platform for revolutionary calorimetric applications2, these properties have so
far not been experimentally shown. Here we reveal the ultra-sensitive
calorimetric properties of a superconducting MATBG device, by monitoring its
temperature dependent critical current Ic under continuous laser heating with a
wavelength of 1550nm. From the bolometric effect, we are able to extract the
temperature dependence of the electronic thermal conductance Gth, which
remarkably has a non-zero value Gth = 0.19 pW/K at 35mK and in the low
temperature limit is consistent with a power law dependence, as expected for
nodal superconductors. Photo-voltage measurements on this non-optimized device
reveal a peak responsivity of S = 5.8 x 10^7 V/W when the device is biased
close to Ic, with a noise-equivalent power of NEP = 5.5 x 10^-16 WHz^-1/2.
Analysis of the intrinsic perfor-mance shows that a theoretically achievable
limit is defined by thermal fluctuations and can be as low as NEPTEF < 10^-20
WHz-1/2, with operation speeds as fast as ~ 500 ns. This establishes
superconducting MATBG as a revolutionizing active material for ultra-sensitive
photon-detection applications, which could enable currently unavailable
technologies such as THz photon-number-resolving single-photon-detectors.
Related papers
- Enhanced Imaging of Electronic Hot Spots Using Quantum Squeezed Light [0.0]
thermoreflective imaging is being used to perform precise temporal and spatial imaging of heat on wires and semiconductor materials.
We apply quantum squeezed light to perform thermoreflective imaging on micro-wires, surpassing the shot-noise limit of classical approaches.
arXiv Detail & Related papers (2024-03-22T16:55:46Z) - Design and simulation of a transmon qubit chip for Axion detection [103.69390312201169]
Device based on superconducting qubits has been successfully applied in detecting few-GHz single photons via Quantum Non-Demolition measurement (QND)
In this study, we present Qub-IT's status towards the realization of its first superconducting qubit device.
arXiv Detail & Related papers (2023-10-08T17:11:42Z) - Wafer-Scale MgB2 Superconducting Devices [0.012564343689544843]
We report ultra-smooth 0.5 nm root-mean-square roughness films over 100 mm in diameter for the first time and present prototype devices fabricated with these films.
These films demonstrate key superconducting properties including internal quality factor over $mathrm104$ at 4.5 K and high kinetic inductance in the order of tens of pH/sq in a 40 nm film.
This groundbreaking advancement will enable development of elevated temperature, high frequency superconducting quantum circuits and devices.
arXiv Detail & Related papers (2023-05-24T14:28:58Z) - Site-Selective Enhancement of Superconducting Nanowire Single-Photon
Detectors via Local Helium Ion Irradiation [0.0]
We utilize local helium ion irradiation to tune single-photon detection efficiency, switching current, and critical temperature of individual devices on the same chip.
For 12nm thick highly absorptive SNSPDs, we observe an increase of the system detection efficiency from $ 0.05,%$ to $(55.3 pm 1.1),%$ following irradiation.
Investigations of the scaling of superconducting thin film properties with irradiation up to a fluence of $2600 revealed an increase of sheet resistance and a decrease of critical temperature towards high fluences.
arXiv Detail & Related papers (2023-05-23T15:51:13Z) - A highly-sensitive broadband superconducting thermoelectric
single-photon detector [62.997667081978825]
A thermoelectric detector (TED) converts a finite temperature difference caused by the absorption of a single photon into an open circuit thermovoltage.
Our TED is able to reveal single-photons of frequency ranging from about 15 GHz to about 150 PHz depending on the chosen design and materials.
arXiv Detail & Related papers (2023-02-06T17:08:36Z) - Photophysics of Intrinsic Single-Photon Emitters in Silicon Nitride at
Low Temperatures [97.5153823429076]
A robust process for fabricating intrinsic single-photon emitters in silicon nitride has been recently established.
These emitters show promise for quantum applications due to room-temperature operation and monolithic integration with the technologically mature silicon nitride photonics platform.
arXiv Detail & Related papers (2023-01-25T19:53:56Z) - Position-controlled Telecom Single Photon Emitters Operating at Elevated
Temperatures [0.0]
We demonstrate high purity single photon emission at 1.31 mum using deterministically positioned InP photonic waveguide nanowires containing single InAsP quantum dot-in-a-rod structures.
These results are a promising step towards scalably fabricating telecom single photon emitters that operate under relaxed cooling requirements.
arXiv Detail & Related papers (2022-10-23T19:43:07Z) - Hot-Band Absorption Can Mimic Entangled Two-Photon Absorption [52.77024349608834]
We investigated the fluorescence signals from Rhodamine 6G and LDS798 excited with a CW laser or an entangled photon pair source at 1060 nm.
We observed a signal that originates from hot-band absorption (HBA), which is one-photon absorption from thermally-populated vibrational levels of the ground electronic state.
For the typical conditions under which E2PEF measurements are performed, contributions from the HBA process could lead to a several orders-of-magnitude overestimate of the quantum advantage for excitation efficiency.
arXiv Detail & Related papers (2021-11-10T21:17:47Z) - Measurement of the Low-temperature Loss Tangent of High-resistivity
Silicon with a High Q-factor Superconducting Resonator [58.720142291102135]
We present the direct loss tangent measurement of a high-resist intrinsicivity (100) silicon wafer in the temperature range from 70 mK to 1 K.
The measurement was performed using a technique that takes advantage of a high quality factor superconducting niobium resonator.
arXiv Detail & Related papers (2021-08-19T20:13:07Z) - Temperature insensitive type II quasi-phasematched spontaneous
parametric downconversion [62.997667081978825]
The temperature dependence of the refractive indices of potassium titanyl phosphate (KTP) are shown to enable quasi-phasematched type II spontaneous parametric downconversion.
We demonstrate the effect experimentally, observing temperature-insensitive degenerate emission at 1326nm, within the telecommunications O band.
This result has practical applications in the development of entangled photon sources for resource-constrained environments.
arXiv Detail & Related papers (2020-12-09T16:14:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.