論文の概要: Measuring Geometric Similarity Across Possible Plans for Automated
Redistricting
- arxiv url: http://arxiv.org/abs/2111.08889v1
- Date: Wed, 17 Nov 2021 03:37:25 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-07 22:00:44.623080
- Title: Measuring Geometric Similarity Across Possible Plans for Automated
Redistricting
- Title(参考訳): 自動再分級計画における幾何学的類似度の測定
- Authors: Gilvir Gill
- Abstract要約: 本稿では,2つの計画の間に同一の選挙区に留まる州の面積や人口の比率に対応する,類似性の解釈的尺度とそれに対応する代入行列を簡潔に紹介する。
次に、直感的な時間でこの測度を計算する方法を示し、潜在的なユースケースを簡潔に示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Algorithmic and statistical approaches to congressional redistricting are
becoming increasingly valuable tools in courts and redistricting commissions
for quantifying gerrymandering in the United States. While there is existing
literature covering how various Markov chain Monte Carlo distributions differ
in terms of projected electoral outcomes and geometric quantifiers of
compactness, there is still work to be done on measuring similarities between
different congressional redistricting plans. This paper briefly introduces an
intuitive and interpretive measure of similarity, and a corresponding
assignment matrix, that corresponds to the percentage of a state's area or
population that stays in the same congressional district between two plans. We
then show how to calculate this measure in polynomial time and briefly
demonstrate some potential use-cases.
- Abstract(参考訳): 議会再編成に対するアルゴリズムと統計のアプローチは、アメリカ合衆国におけるゲリーマンデリングの定量化のための裁判所や再編成委員会において、ますます貴重なツールになりつつある。
様々なマルコフ連鎖モンテカルロ分布が、予測された選挙結果とコンパクト性の幾何量化器の観点からどのように異なるかに関する文献は存在するが、異なる議会再分権計画の類似性を測定するための作業は依然として行われている。
本稿では,類似性の直観的かつ解釈的な尺度と,2つの計画間で同じ選挙区に留まっている州の面積や人口の比率に対応する代入行列を簡潔に紹介する。
次に、多項式時間でこの測度を計算する方法を示し、潜在的なユースケースを簡潔に示す。
関連論文リスト
- Multiscale Parallel Tempering for Fast Sampling on Redistricting Plans [1.1233768932957773]
説得力のある方法は、計画と中立に描画された再限定計画のアンサンブルを比較することである。
アンサンブルと所定の計画との党派差を監査するためには、非党派基準が一致していることを保証する必要がある。
本研究では,各スケールで局所移動を行うマルチスケール並列テンパリング手法を提案する。
論文 参考訳(メタデータ) (2024-01-30T21:33:05Z) - Counting Like Human: Anthropoid Crowd Counting on Modeling the
Similarity of Objects [92.80955339180119]
メインストリームの群衆計数法は 密度マップを補強して 計数結果を得るために統合する。
これに触発された我々は,合理的かつ人為的な集団カウントフレームワークを提案する。
論文 参考訳(メタデータ) (2022-12-02T07:00:53Z) - Expected Frequency Matrices of Elections: Computation, Geometry, and
Preference Learning [58.23459346724491]
我々は、Szufa et al.(AAMAS 2020)の「選挙マップ」アプローチを用いて、よく知られた投票分布を分析します。
分布の「スケルトン写像」を描き、その頑健さを評価し、その性質を分析する。
論文 参考訳(メタデータ) (2022-05-16T17:40:22Z) - Compact Redistricting Plans Have Many Spanning Trees [39.779544988993294]
政治的再分権マップの設計と分析において、国勢調査ブロックのグラフのすべての分割の空間から同じ人口の連結部分グラフにサンプリングできることがしばしば有用である。
本稿では,境界分割領域の総長さと,そのような写像がサンプリングされる確率との間には,逆指数関係が成立する。
論文 参考訳(メタデータ) (2021-09-27T23:36:01Z) - A Statistical Analysis of Summarization Evaluation Metrics using
Resampling Methods [60.04142561088524]
信頼区間は比較的広く,信頼性の高い自動測定値の信頼性に高い不確実性を示す。
多くのメトリクスはROUGEよりも統計的改善を示していないが、QAEvalとBERTScoreという2つの最近の研究は、いくつかの評価設定で行われている。
論文 参考訳(メタデータ) (2021-03-31T18:28:14Z) - Colorado in Context: Congressional Redistricting and Competing Fairness
Criteria in Colorado [0.0]
我々は、合理的な再分権計画の大きなランダムサンプルを生成し、2018年の州全体の選挙でのリターンを用いて、各地区の党派バランスを決定する。
本研究では, 党派的な成果, 分割される郡数, 計画における競争地区数との関係について検討する。
論文 参考訳(メタデータ) (2020-11-11T20:05:50Z) - Sequential Monte Carlo for Sampling Balanced and Compact Redistricting
Plans [0.0]
本稿では,現実的な目標分布に収束する再限定計画のサンプルを生成する,SMC(Sequential Monte Carlo)アルゴリズムを提案する。
提案アルゴリズムの精度を,すべての再分割計画を列挙可能な小さなマップを用いて検証する。
次に、SMCアルゴリズムを用いて、ペンシルベニア州の最近の有名な再分権事件において、関係当事者が提出したいくつかの地図のパルチザン的含意を評価する。
論文 参考訳(メタデータ) (2020-08-13T23:26:34Z) - Making Affine Correspondences Work in Camera Geometry Computation [62.7633180470428]
局所的な特徴は、ポイント・ツー・ポイント対応ではなく、リージョン・ツー・リージョンを提供する。
本稿では,全モデル推定パイプラインにおいて,地域間マッチングを効果的に活用するためのガイドラインを提案する。
実験により、アフィンソルバはより高速な実行時にポイントベースソルバに匹敵する精度を達成できることが示された。
論文 参考訳(メタデータ) (2020-07-20T12:07:48Z) - The Essential Role of Empirical Validation in Legislative Redistricting
Simulation [0.0]
提案手法は,計画の再分割を効率的に行うことのできる計算手法である。
このアルゴリズムは,数百の地理的単位を持つ状態に拡張可能であることを示す。
論文 参考訳(メタデータ) (2020-06-17T20:51:43Z) - Fast and Robust Comparison of Probability Measures in Heterogeneous
Spaces [62.35667646858558]
本稿では, アンカー・エナジー (AE) とアンカー・ワッサースタイン (AW) 距離を紹介する。
我々の主な貢献は、素案実装が立方体となる対数四重項時間でAEを正確に計算するスイープラインアルゴリズムを提案することである。
AE と AW は,一般的な GW 近似の計算コストのごく一部において,様々な実験環境において良好に動作することを示す。
論文 参考訳(メタデータ) (2020-02-05T03:09:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。