論文の概要: Protection of SVM Model with Secret Key from Unauthorized Access
- arxiv url: http://arxiv.org/abs/2111.08927v1
- Date: Wed, 17 Nov 2021 06:41:51 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-18 14:41:41.486028
- Title: Protection of SVM Model with Secret Key from Unauthorized Access
- Title(参考訳): 秘密鍵によるsvmモデルの不正アクセスからの保護
- Authors: Ryota Iijima, AprilPyone MaungMaung, Hitoshi Kiya
- Abstract要約: 本稿では,ベクトルマシン(SVM)モデルをサポートする秘密鍵を用いたブロックワイズ画像変換手法を提案する。
変換された画像を使用することでトレーニングされたモデルは、キーのない未許可のユーザにはパフォーマンスが悪く、キーを持った認証されたユーザには高いパフォーマンスを提供することができる。
- 参考スコア(独自算出の注目度): 13.106063755117399
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a block-wise image transformation method with a
secret key for support vector machine (SVM) models. Models trained by using
transformed images offer a poor performance to unauthorized users without a
key, while they can offer a high performance to authorized users with a key.
The proposed method is demonstrated to be robust enough against unauthorized
access even under the use of kernel functions in a facial recognition
experiment.
- Abstract(参考訳): 本稿では,サポートベクトルマシン(SVM)モデルのための秘密鍵を用いたブロックワイズ画像変換手法を提案する。
変換された画像を使用することでトレーニングされたモデルは、キーのない未許可のユーザにはパフォーマンスが悪く、キーを持った認証されたユーザには高いパフォーマンスを提供することができる。
提案手法は,顔認識実験においてカーネル関数を用いても,不正アクセスに対して十分に堅牢であることを示す。
関連論文リスト
- Sample Correlation for Fingerprinting Deep Face Recognition [83.53005932513156]
SAC(SA Corremplelation)に基づく新しいモデル盗難検出手法を提案する。
SACは、顔認証や顔の感情認識を含む、深層顔認識における様々なモデル盗難攻撃に対して、AUC、p値、F1スコアの点で最高のパフォーマンスを示すことに成功した。
我々は,SAC-JC の評価を Tiny-ImageNet や CIFAR10 などのオブジェクト認識に拡張し,従来の手法よりも SAC-JC の優れた性能を示す。
論文 参考訳(メタデータ) (2024-12-30T07:37:06Z) - ID-Guard: A Universal Framework for Combating Facial Manipulation via Breaking Identification [60.73617868629575]
深層学習に基づく顔操作の誤用は、公民権に対する潜在的な脅威となる。
この不正行為を防ぐため、プロアクティブな防御技術が提案され、操作プロセスを妨害した。
我々は,ID-Guardと呼ばれる,顔操作と戦うための新しい普遍的枠組みを提案する。
論文 参考訳(メタデータ) (2024-09-20T09:30:08Z) - PRO-Face S: Privacy-preserving Reversible Obfuscation of Face Images via
Secure Flow [69.78820726573935]
保護フローベースモデルを用いて,プライバシ保護による顔画像の可逆難読化(Reversible Obfuscation of Face image)を略してpro-Face Sと命名する。
本フレームワークでは、Invertible Neural Network(INN)を使用して、入力画像と、その事前難読化されたフォームとを処理し、事前難読化された画像と視覚的に近似したプライバシー保護された画像を生成する。
論文 参考訳(メタデータ) (2023-07-18T10:55:54Z) - Attribute-Guided Encryption with Facial Texture Masking [64.77548539959501]
本稿では,顔認識システムからユーザを保護するために,顔テクスチャマスキングを用いた属性ガイド暗号化を提案する。
提案手法は,最先端の手法よりも自然な画像を生成する。
論文 参考訳(メタデータ) (2023-05-22T23:50:43Z) - Publicly-Verifiable Deletion via Target-Collapsing Functions [81.13800728941818]
ターゲットの折り畳みは、公開可能な削除(PVD)を可能にすることを示す。
我々は、弱い暗号的仮定から公開可能な削除を支援する様々なプリミティブを得るために、このフレームワークを構築している。
論文 参考訳(メタデータ) (2023-03-15T15:00:20Z) - Access Control with Encrypted Feature Maps for Object Detection Models [10.925242558525683]
本稿では,オブジェクト検出モデルのための秘密鍵を用いたアクセス制御手法を提案する。
選択された特徴マップは、モデルのトレーニングとテストのための秘密鍵で暗号化される。
実験では、保護されたモデルにより、許可されたユーザーが保護されていないモデルとほぼ同じ性能を得られるようにした。
論文 参考訳(メタデータ) (2022-09-29T14:46:04Z) - An Access Control Method with Secret Key for Semantic Segmentation
Models [12.27887776401573]
非許可アクセスからモデルを保護するために,秘密鍵を用いた新しいアクセス制御法を提案する。
セグメンテーション変換器(SETR)と呼ばれる視覚変換器(ViT)を用いたセグメンテーションモデルに焦点を当てる。
論文 参考訳(メタデータ) (2022-08-28T04:09:36Z) - Access Control of Semantic Segmentation Models Using Encrypted Feature
Maps [12.29209267739635]
セマンティックセグメンテーションモデルのための秘密鍵を用いたアクセス制御手法を提案する。
選択された特徴マップは、モデルのトレーニングとテストのための秘密鍵で暗号化される。
実験では、保護されたモデルにより、許可されたユーザーが保護されていないモデルとほぼ同じ性能を得られるようにした。
論文 参考訳(メタデータ) (2022-06-11T05:02:01Z) - Protecting Semantic Segmentation Models by Using Block-wise Image
Encryption with Secret Key from Unauthorized Access [13.106063755117399]
秘密鍵を用いたブロックワイズ変換を利用して,セマンティックセグメンテーションモデルを不正アクセスから保護することを提案する。
実験の結果,提案手法により,適切なキーを持つ適切なユーザに対して,モデルにフル容量でアクセスし,不正ユーザの性能を低下させることができることがわかった。
論文 参考訳(メタデータ) (2021-07-20T09:31:15Z) - A Protection Method of Trained CNN Model with Secret Key from
Unauthorized Access [15.483078145498085]
本稿では,秘密鍵セットを用いて畳み込みニューラルネットワーク(CNN)モデルを保護する新しい手法を提案する。
本手法は,著作権侵害から保護するだけでなく,モデルの機能も不正アクセスから保護することができる。
論文 参考訳(メタデータ) (2021-05-31T07:37:33Z) - Towards Face Encryption by Generating Adversarial Identity Masks [53.82211571716117]
敵の識別マスクを生成するためのターゲットID保護反復法(TIP-IM)を提案する。
TIP-IMは、様々な最先端の顔認識モデルに対して95%以上の保護成功率を提供する。
論文 参考訳(メタデータ) (2020-03-15T12:45:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。