論文の概要: Complex Terrain Navigation via Model Error Prediction
- arxiv url: http://arxiv.org/abs/2111.09768v1
- Date: Thu, 18 Nov 2021 15:55:04 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-19 15:13:47.359757
- Title: Complex Terrain Navigation via Model Error Prediction
- Title(参考訳): モデル誤差予測による複雑な地形ナビゲーション
- Authors: Adam Polevoy, Craig Knuth, Katie M. Popek, Kapil D. Katyal
- Abstract要約: 私たちは、オンラインのアプローチでトレーニングを行い、その結果、シミュレーションと現実世界にまたがる、50分間のトレーニングデータを使用して、ナビゲーションポリシーを成功させました。
学習に基づくナビゲーションシステムは,Clearpath Huskyが様々な地形を航行する様子を実演する,効率的な短期プランナーである。
- 参考スコア(独自算出の注目度): 5.937673383513695
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Robot navigation traditionally relies on building an explicit map that is
used to plan collision-free trajectories to a desired target. In deformable,
complex terrain, using geometric-based approaches can fail to find a path due
to mischaracterizing deformable objects as rigid and impassable. Instead, we
learn to predict an estimate of traversability of terrain regions and to prefer
regions that are easier to navigate (e.g., short grass over small shrubs).
Rather than predicting collisions, we instead regress on realized error
compared to a canonical dynamics model. We train with an on-policy approach,
resulting in successful navigation policies using as little as 50 minutes of
training data split across simulation and real world. Our learning-based
navigation system is a sample efficient short-term planner that we demonstrate
on a Clearpath Husky navigating through a variety of terrain including
grassland and forest
- Abstract(参考訳): ロボットナビゲーションは従来、衝突のない軌道を望ましい目標に計画するために使われる明示的な地図を構築することに依存している。
変形可能で複雑な地形では、幾何学的アプローチを用いることで、変形可能な物体を剛性かつ不可避と誤認するため、経路を見つけることができない。
代わりに、地形領域の移動可能性の推定を予測し、移動しやすい地域(例えば、小さな低木よりも短い草)を優先することを学ぶ。
衝突を予測する代わりに、正準力学モデルと比較して現実の誤差を抑える。
私たちは、オンラインのアプローチでトレーニングを行い、その結果、シミュレーションと現実世界にまたがる、50分間のトレーニングデータを使用して、ナビゲーションポリシーを成功させました。
私たちの学習に基づくナビゲーションシステムは,草原や森林など,様々な地形を横断するクリアパス・ハスキーを実演する,効率的な短期プランナーのサンプルである。
関連論文リスト
- Pixel to Elevation: Learning to Predict Elevation Maps at Long Range using Images for Autonomous Offroad Navigation [10.898724668444125]
本稿では,車載エゴセントリック画像のみをリアルタイムに利用して,長距離の地形標高マップを予測できる学習型アプローチを提案する。
複雑で非構造的な地形における自律型オフロードロボットナビゲーションへの提案手法の適用性を実験的に検証した。
論文 参考訳(メタデータ) (2024-01-30T22:37:24Z) - NoMaD: Goal Masked Diffusion Policies for Navigation and Exploration [57.15811390835294]
本稿では,目標指向ナビゲーションと目標非依存探索の両方を扱うために,単一の統合拡散政策をトレーニングする方法について述べる。
この統一された政策は、新しい環境における目標を視覚的に示す際に、全体的な性能が向上することを示す。
実世界の移動ロボットプラットフォーム上で実施した実験は,5つの代替手法と比較して,見えない環境における効果的なナビゲーションを示す。
論文 参考訳(メタデータ) (2023-10-11T21:07:14Z) - Object Goal Navigation with Recursive Implicit Maps [92.6347010295396]
対象目標ナビゲーションのための暗黙的な空間マップを提案する。
提案手法は, 挑戦的なMP3Dデータセット上での技量を著しく上回る。
我々は、実際のロボットにモデルをデプロイし、実際のシーンでオブジェクトゴールナビゲーションの結果を奨励する。
論文 参考訳(メタデータ) (2023-08-10T14:21:33Z) - Learning to Predict Navigational Patterns from Partial Observations [63.04492958425066]
本稿では,実環境におけるナビゲーションのパターンを,部分的な観察のみから推測する,初めての自己教師型学習(SSL)手法を提案する。
我々は、DSLPフィールドに最大極大グラフを適合させることにより、グローバルなナビゲーションパターンを推論する方法を実証する。
実験により,我々のSSLモデルはnuScenesデータセット上で2つのSOTA教師付きレーングラフ予測モデルより優れていることが示された。
論文 参考訳(メタデータ) (2023-04-26T02:08:46Z) - How Does It Feel? Self-Supervised Costmap Learning for Off-Road Vehicle
Traversability [7.305104984234086]
オフロード環境における地形の移動性の推定には、ロボットとこれらの地形の間の複雑な相互作用のダイナミクスを推論する必要がある。
本研究では,外外環境情報と固有地形相互作用フィードバックを組み合わせることで,トラバーサビリティのコストマップを予測する手法を提案する。
論文 参考訳(メタデータ) (2022-09-22T05:18:35Z) - Learning Forward Dynamics Model and Informed Trajectory Sampler for Safe
Quadruped Navigation [1.2783783498844021]
典型的なSOTAシステムは、マッパー、グローバルプランナー、ローカルプランナー、コマンドトラッキングコントローラの4つの主要モジュールで構成されている。
我々は,グローバルプランナから粗い計画経路を追跡するためのベロシティプランを生成するために,ロバストで安全なローカルプランナを構築している。
この枠組みを用いることで、四足歩行ロボットは衝突なしに様々な複雑な環境を自律的に移動でき、ベースライン法と比較してスムーズなコマンドプランを生成することができる。
論文 参考訳(メタデータ) (2022-04-19T04:01:44Z) - Learning multiobjective rough terrain traversability [0.0]
本研究では, 地形の高分解能地形データと地上車両シミュレーションを用いて, トラバーサビリティの予測を行う手法を提案する。
深層ニューラルネットワークは、局所的なハイトマップと目標速度からトラバーサビリティ対策を予測するために訓練される。
従来は見つからなかったレーザ走査型森林地形のモデルについて検討した。
論文 参考訳(メタデータ) (2022-03-30T14:31:43Z) - Find a Way Forward: a Language-Guided Semantic Map Navigator [53.69229615952205]
本稿では,新たな視点で言語誘導ナビゲーションの問題に対処する。
ロボットが自然言語の指示を実行し、地図観測に基づいて目標位置へ移動できるようにする。
提案手法は特に長距離ナビゲーションの場合において顕著な性能向上をもたらす。
論文 参考訳(メタデータ) (2022-03-07T07:40:33Z) - ViKiNG: Vision-Based Kilometer-Scale Navigation with Geographic Hints [94.60414567852536]
長距離航法には、計画と局所的な移動可能性の推論の両方が必要である。
学習と計画を統合する学習に基づくアプローチを提案する。
ViKiNGは、画像ベースの学習コントローラを利用できる。
論文 参考訳(メタデータ) (2022-02-23T02:14:23Z) - Lifelong Topological Visual Navigation [16.41858724205884]
本稿では,生涯ナビゲーション性能を時間とともに向上させるグラフ更新戦略を用いた学習型ビジュアルナビゲーション手法を提案する。
画像に基づくトポロジグラフを構築するためのサンプリングベースの計画アルゴリズムから着想を得た結果,スペーサーグラフはベースライン法に比べてナビゲーション性能が高い。
固定的なトレーニング環境から学習するコントローラとは異なり、ロボットが配置される実環境から比較的小さなデータセットを使ってモデルを微調整できることが示される。
論文 参考訳(メタデータ) (2021-10-16T06:16:14Z) - BADGR: An Autonomous Self-Supervised Learning-Based Navigation System [158.6392333480079]
BadGRは、エンドツーエンドの学習ベースのモバイルロボットナビゲーションシステムである。
実際の環境で収集された、自己監督型のオフポリシーデータでトレーニングすることができる。
BadGRは、幾何学的に邪魔な障害物を伴って、現実世界の都市やオフロード環境をナビゲートすることができる。
論文 参考訳(メタデータ) (2020-02-13T18:40:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。