Enhanced countering adversarial attacks via input denoising and feature
restoring
- URL: http://arxiv.org/abs/2111.10075v1
- Date: Fri, 19 Nov 2021 07:34:09 GMT
- Title: Enhanced countering adversarial attacks via input denoising and feature
restoring
- Authors: Yanni Li and Wenhui Zhang and Jiawei Liu and Xiaoli Kou and Hui Li and
Jiangtao Cui
- Abstract summary: Deep neural networks (DNNs) are vulnerable to adversarial examples/samples (AEs) with imperceptible perturbations in clean/original samples.
This paper presents an enhanced countering adversarial attack method IDFR (via Input Denoising and Feature Restoring)
The proposed IDFR is made up of an enhanced input denoiser (ID) and a hidden lossy feature restorer (FR) based on the convex hull optimization.
- Score: 15.787838084050957
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Despite the fact that deep neural networks (DNNs) have achieved prominent
performance in various applications, it is well known that DNNs are vulnerable
to adversarial examples/samples (AEs) with imperceptible perturbations in
clean/original samples. To overcome the weakness of the existing defense
methods against adversarial attacks, which damages the information on the
original samples, leading to the decrease of the target classifier accuracy,
this paper presents an enhanced countering adversarial attack method IDFR (via
Input Denoising and Feature Restoring). The proposed IDFR is made up of an
enhanced input denoiser (ID) and a hidden lossy feature restorer (FR) based on
the convex hull optimization. Extensive experiments conducted on benchmark
datasets show that the proposed IDFR outperforms the various state-of-the-art
defense methods, and is highly effective for protecting target models against
various adversarial black-box or white-box attacks. \footnote{Souce code is
released at:
\href{https://github.com/ID-FR/IDFR}{https://github.com/ID-FR/IDFR}}
Related papers
- STBA: Towards Evaluating the Robustness of DNNs for Query-Limited Black-box Scenario [50.37501379058119]
We propose the Spatial Transform Black-box Attack (STBA) to craft formidable adversarial examples in the query-limited scenario.
We show that STBA could effectively improve the imperceptibility of the adversarial examples and remarkably boost the attack success rate under query-limited settings.
arXiv Detail & Related papers (2024-03-30T13:28:53Z) - Enhancing Adversarial Robustness via Score-Based Optimization [22.87882885963586]
Adversarial attacks have the potential to mislead deep neural network classifiers by introducing slight perturbations.
We introduce a novel adversarial defense scheme named ScoreOpt, which optimize adversarial samples at test-time.
Our experimental results demonstrate that our approach outperforms existing adversarial defenses in terms of both performance and robustness speed.
arXiv Detail & Related papers (2023-07-10T03:59:42Z) - Discriminator-Free Generative Adversarial Attack [87.71852388383242]
Agenerative-based adversarial attacks can get rid of this limitation.
ASymmetric Saliency-based Auto-Encoder (SSAE) generates the perturbations.
The adversarial examples generated by SSAE not only make thewidely-used models collapse, but also achieves good visual quality.
arXiv Detail & Related papers (2021-07-20T01:55:21Z) - Detect and Defense Against Adversarial Examples in Deep Learning using
Natural Scene Statistics and Adaptive Denoising [12.378017309516965]
We propose a framework for defending DNN against ad-versarial samples.
The detector aims to detect AEs bycharacterizing them through the use of natural scenestatistic.
The proposed method outperforms the state-of-the-art defense techniques.
arXiv Detail & Related papers (2021-07-12T23:45:44Z) - Selective and Features based Adversarial Example Detection [12.443388374869745]
Security-sensitive applications that relay on Deep Neural Networks (DNNs) are vulnerable to small perturbations crafted to generate Adversarial Examples (AEs)
We propose a novel unsupervised detection mechanism that uses the selective prediction, processing model layers outputs, and knowledge transfer concepts in a multi-task learning setting.
Experimental results show that the proposed approach achieves comparable results to the state-of-the-art methods against tested attacks in white box scenario and better results in black and gray boxes scenarios.
arXiv Detail & Related papers (2021-03-09T11:06:15Z) - Mitigating the Impact of Adversarial Attacks in Very Deep Networks [10.555822166916705]
Deep Neural Network (DNN) models have vulnerabilities related to security concerns.
Data poisoning-enabled perturbation attacks are complex adversarial ones that inject false data into models.
We propose an attack-agnostic-based defense method for mitigating their influence.
arXiv Detail & Related papers (2020-12-08T21:25:44Z) - Improving Query Efficiency of Black-box Adversarial Attack [75.71530208862319]
We propose a Neural Process based black-box adversarial attack (NP-Attack)
NP-Attack could greatly decrease the query counts under the black-box setting.
arXiv Detail & Related papers (2020-09-24T06:22:56Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
In this paper, an effective anomaly detection framework is proposed utilizing Bayesian Optimization technique.
The performance of the considered algorithms is evaluated using the ISCX 2012 dataset.
Experimental results show the effectiveness of the proposed framework in term of accuracy rate, precision, low-false alarm rate, and recall.
arXiv Detail & Related papers (2020-08-05T19:29:35Z) - Defense for Black-box Attacks on Anti-spoofing Models by Self-Supervised
Learning [71.17774313301753]
We explore the robustness of self-supervised learned high-level representations by using them in the defense against adversarial attacks.
Experimental results on the ASVspoof 2019 dataset demonstrate that high-level representations extracted by Mockingjay can prevent the transferability of adversarial examples.
arXiv Detail & Related papers (2020-06-05T03:03:06Z) - Towards Query-Efficient Black-Box Adversary with Zeroth-Order Natural
Gradient Descent [92.4348499398224]
Black-box adversarial attack methods have received special attentions owing to their practicality and simplicity.
We propose a zeroth-order natural gradient descent (ZO-NGD) method to design the adversarial attacks.
ZO-NGD can obtain significantly lower model query complexities compared with state-of-the-art attack methods.
arXiv Detail & Related papers (2020-02-18T21:48:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.