論文の概要: Evaluating Self and Semi-Supervised Methods for Remote Sensing
Segmentation Tasks
- arxiv url: http://arxiv.org/abs/2111.10079v1
- Date: Fri, 19 Nov 2021 07:41:14 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-22 16:16:20.137603
- Title: Evaluating Self and Semi-Supervised Methods for Remote Sensing
Segmentation Tasks
- Title(参考訳): リモートセンシングセグメンテーションタスクのための自己および半教師あり手法の評価
- Authors: Chaitanya Patel, Shashank Sharma, Varun Gulshan
- Abstract要約: 我々は、下流タスク性能を改善するためにラベルのないデータを活用する、最近の自己および半教師付きML技術を評価する。
これらの手法は、ラベルなし画像へのアクセスが容易で、真理ラベルの取得が高価である場合が多いため、リモートセンシングタスクには特に有用である。
- 参考スコア(独自算出の注目度): 4.7590051176368915
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We perform a rigorous evaluation of recent self and semi-supervised ML
techniques that leverage unlabeled data for improving downstream task
performance, on three remote sensing tasks of riverbed segmentation, land cover
mapping and flood mapping. These methods are especially valuable for remote
sensing tasks since there is easy access to unlabeled imagery and getting
ground truth labels can often be expensive. We quantify performance
improvements one can expect on these remote sensing segmentation tasks when
unlabeled imagery (outside of the labeled dataset) is made available for
training. We also design experiments to test the effectiveness of these
techniques when the test set has a domain shift relative to the training and
validation sets.
- Abstract(参考訳): 河床セグメンテーション,土地被覆マッピング,洪水マッピングの3つのリモートセンシングタスクにおいて,下流の作業性能を改善するためにラベルのないデータを活用する,最近の自己および半教師付きML手法の厳密な評価を行う。
これらの手法は、ラベルなし画像へのアクセスが容易で、真理ラベルの取得が高価である場合が多いため、リモートセンシングタスクには特に有用である。
これらのリモートセンシングセグメンテーションタスクにおいて、ラベル付きデータセット以外の)ラベルなし画像がトレーニングに利用できる場合に期待できるパフォーマンス改善を定量化する。
テストセットがトレーニングと検証セットに対してドメインシフトがある場合、これらのテクニックの有効性をテストする実験も設計する。
関連論文リスト
- SiamSeg: Self-Training with Contrastive Learning for Unsupervised Domain Adaptation Semantic Segmentation in Remote Sensing [14.007392647145448]
UDAは、ラベル付きソースドメインデータをトレーニングしながら、ラベルなしのターゲットドメインデータからモデルを学習することを可能にする。
コントラスト学習を UDA に統合し,セマンティック情報を取得する能力を向上させることを提案する。
我々のSimSegメソッドは既存の手法より優れ、最先端の結果が得られます。
論文 参考訳(メタデータ) (2024-10-17T11:59:39Z) - TrajSSL: Trajectory-Enhanced Semi-Supervised 3D Object Detection [59.498894868956306]
Pseudo-labeling approach to semi-supervised learning は教師-学生の枠組みを採用する。
我々は、事前学習した動き予測モデルを活用し、擬似ラベル付きデータに基づいて物体軌跡を生成する。
提案手法は2つの異なる方法で擬似ラベル品質を向上する。
論文 参考訳(メタデータ) (2024-09-17T05:35:00Z) - Auxiliary Tasks Enhanced Dual-affinity Learning for Weakly Supervised
Semantic Segmentation [79.05949524349005]
AuxSegNet+は、サリエンシマップから豊富な情報を探索する弱教師付き補助学習フレームワークである。
また,サリエンシとセグメンテーションの特徴マップから画素レベルの親和性を学習するためのクロスタスク親和性学習機構を提案する。
論文 参考訳(メタデータ) (2024-03-02T10:03:21Z) - Task Specific Pretraining with Noisy Labels for Remote Sensing Image Segmentation [18.598405597933752]
自己監督(Self-supervision)は、人造地理空間アノテーションの正確な量を減らすためのリモートセンシングツールを提供する。
本研究では,モデル事前学習のためのノイズの多いセマンティックセグメンテーションマップを提案する。
2つのデータセットから,ノイズラベルを用いたタスク固有教師付き事前学習の有効性が示唆された。
論文 参考訳(メタデータ) (2024-02-25T18:01:42Z) - Terrain-Informed Self-Supervised Learning: Enhancing Building Footprint Extraction from LiDAR Data with Limited Annotations [1.3243401820948064]
フットプリントマップの構築は、広範な後処理なしで正確なフットプリント抽出を約束する。
ディープラーニング手法は、一般化とラベルの効率の面で課題に直面している。
リモートセンシングに適した地形認識型自己教師型学習を提案する。
論文 参考訳(メタデータ) (2023-11-02T12:34:23Z) - Label-Efficient Object Detection via Region Proposal Network
Pre-Training [58.50615557874024]
地域提案ネットワーク(RPN)に効果的な事前学習を提供するための簡単な事前学習タスクを提案する。
RPN事前学習のないマルチステージ検出器と比較して,本手法はダウンストリームタスク性能を継続的に改善することができる。
論文 参考訳(メタデータ) (2022-11-16T16:28:18Z) - Evaluating the Label Efficiency of Contrastive Self-Supervised Learning
for Multi-Resolution Satellite Imagery [0.0]
遠隔センシング領域における自己教師付き学習は、容易に利用可能なラベル付きデータを活用するために応用されている。
本稿では,ラベル効率のレンズを用いた自己教師型視覚表現学習について検討する。
論文 参考訳(メタデータ) (2022-10-13T06:54:13Z) - Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D
Object Detection [85.11649974840758]
3Dオブジェクト検出ネットワークは、トレーニングされたデータに対してバイアスを受ける傾向がある。
そこで本研究では,ライダーを用いた3次元物体検出器のソースレス・教師なし領域適応のための単一フレーム手法を提案する。
論文 参考訳(メタデータ) (2021-11-30T18:42:42Z) - Active Learning for Improved Semi-Supervised Semantic Segmentation in
Satellite Images [1.0152838128195467]
半教師付きテクニックは、ラベル付きサンプルの小さなセットから擬似ラベルを生成する。
そこで我々は,ラベル付きトレーニングデータの集合を高度に代表的に選択するために,アクティブな学習に基づくサンプリング戦略を提案する。
我々はmIoUの27%の改善を報告し、2%のラベル付きデータをアクティブラーニングサンプリング戦略を用いて報告した。
論文 参考訳(メタデータ) (2021-10-15T00:29:31Z) - Leveraging Auxiliary Tasks with Affinity Learning for Weakly Supervised
Semantic Segmentation [88.49669148290306]
そこで我々はAuxSegNetと呼ばれる弱教師付きマルチタスク・フレームワークを提案し,サリエンシ検出とマルチラベル画像分類を補助タスクとして活用する。
同様の構造的セマンティクスに着想を得て,サリエンシとセグメンテーションの表現から,クロスタスクなグローバル画素レベルの親和性マップを学習することを提案する。
学習されたクロスタスク親和性は、両方のタスクに対して改善された擬似ラベルを提供するために、唾液度予測を洗練し、CAMマップを伝播するために使用することができる。
論文 参考訳(メタデータ) (2021-07-25T11:39:58Z) - Seasonal Contrast: Unsupervised Pre-Training from Uncurated Remote
Sensing Data [64.40187171234838]
季節的コントラスト(SeCo)は、リモートセンシング表現のドメイン内事前トレーニングにラベルのないデータを活用するための効果的なパイプラインである。
SeCoは、転送学習を容易にし、再リモートセンシングアプリケーションの急速な進歩を可能にするために公開されます。
論文 参考訳(メタデータ) (2021-03-30T18:26:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。