A Hybrid Approach for an Interpretable and Explainable Intrusion
Detection System
- URL: http://arxiv.org/abs/2111.10280v1
- Date: Fri, 19 Nov 2021 15:39:28 GMT
- Title: A Hybrid Approach for an Interpretable and Explainable Intrusion
Detection System
- Authors: Tiago Dias, Nuno Oliveira, Norberto Sousa, Isabel Pra\c{c}a, Orlando
Sousa
- Abstract summary: This work proposes an interpretable and explainable hybrid intrusion detection system.
The system combines experts' written rules and dynamic knowledge continuously generated by a decision tree algorithm.
- Score: 0.5872014229110213
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cybersecurity has been a concern for quite a while now. In the latest years,
cyberattacks have been increasing in size and complexity, fueled by significant
advances in technology. Nowadays, there is an unavoidable necessity of
protecting systems and data crucial for business continuity. Hence, many
intrusion detection systems have been created in an attempt to mitigate these
threats and contribute to a timelier detection. This work proposes an
interpretable and explainable hybrid intrusion detection system, which makes
use of artificial intelligence methods to achieve better and more long-lasting
security. The system combines experts' written rules and dynamic knowledge
continuously generated by a decision tree algorithm as new shreds of evidence
emerge from network activity.
Related papers
- Counter Denial of Service for Next-Generation Networks within the Artificial Intelligence and Post-Quantum Era [2.156208381257605]
DoS attacks are becoming increasingly sophisticated and easily executable.
State-of-the-art systematization efforts have limitations such as isolated DoS countermeasures.
The emergence of quantum computers is a game changer for DoS from attack and defense perspectives.
arXiv Detail & Related papers (2024-08-08T18:47:31Z) - Utilizing Deep Learning for Enhancing Network Resilience in Finance [0.0]
This paper uses deep learning for advanced threat detection to improve protective measures in the financial industry.
The detection technology mainly uses statistical machine learning methods.
arXiv Detail & Related papers (2024-02-15T09:35:57Z) - Graph Mining for Cybersecurity: A Survey [61.505995908021525]
The explosive growth of cyber attacks nowadays, such as malware, spam, and intrusions, caused severe consequences on society.
Traditional Machine Learning (ML) based methods are extensively used in detecting cyber threats, but they hardly model the correlations between real-world cyber entities.
With the proliferation of graph mining techniques, many researchers investigated these techniques for capturing correlations between cyber entities and achieving high performance.
arXiv Detail & Related papers (2023-04-02T08:43:03Z) - Ensemble learning techniques for intrusion detection system in the
context of cybersecurity [0.0]
Intrusion Detection System concept was used with the application of the Data Mining and Machine Learning Orange tool to obtain better results.
The main objective of the study was to investigate the Ensemble Learning technique using the Stacking method, supported by the Support Vector Machine (SVM) and kNearest Neighbour (kNN) algorithms.
arXiv Detail & Related papers (2022-12-21T10:50:54Z) - Artificial Intelligence-Based Smart Grid Vulnerabilities and Potential
Solutions for Fake-Normal Attacks: A Short Review [0.0]
Smart grid systems are critical to the power industry, however their sophisticated architectural design and operations expose them to a number of cybersecurity threats.
Artificial Intelligence (AI)-based technologies are becoming increasingly popular for detecting cyber assaults in a variety of computer settings.
The present AI systems are being exposed and vanquished because of the recent emergence of sophisticated adversarial systems such as Generative Adversarial Networks (GAN)
arXiv Detail & Related papers (2022-02-14T21:41:36Z) - Inspect, Understand, Overcome: A Survey of Practical Methods for AI
Safety [54.478842696269304]
The use of deep neural networks (DNNs) in safety-critical applications is challenging due to numerous model-inherent shortcomings.
In recent years, a zoo of state-of-the-art techniques aiming to address these safety concerns has emerged.
Our paper addresses both machine learning experts and safety engineers.
arXiv Detail & Related papers (2021-04-29T09:54:54Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
Despite great potential, machine learning in security is prone to subtle pitfalls that undermine its performance.
We identify common pitfalls in the design, implementation, and evaluation of learning-based security systems.
We propose actionable recommendations to support researchers in avoiding or mitigating the pitfalls where possible.
arXiv Detail & Related papers (2020-10-19T13:09:31Z) - Adversarial Machine Learning Attacks and Defense Methods in the Cyber
Security Domain [58.30296637276011]
This paper summarizes the latest research on adversarial attacks against security solutions based on machine learning techniques.
It is the first to discuss the unique challenges of implementing end-to-end adversarial attacks in the cyber security domain.
arXiv Detail & Related papers (2020-07-05T18:22:40Z) - Survey of Network Intrusion Detection Methods from the Perspective of
the Knowledge Discovery in Databases Process [63.75363908696257]
We review the methods that have been applied to network data with the purpose of developing an intrusion detector.
We discuss the techniques used for the capture, preparation and transformation of the data, as well as, the data mining and evaluation methods.
As a result of this literature review, we investigate some open issues which will need to be considered for further research in the area of network security.
arXiv Detail & Related papers (2020-01-27T11:21:05Z) - Adversarial vs behavioural-based defensive AI with joint, continual and
active learning: automated evaluation of robustness to deception, poisoning
and concept drift [62.997667081978825]
Recent advancements in Artificial Intelligence (AI) have brought new capabilities to behavioural analysis (UEBA) for cyber-security.
In this paper, we present a solution to effectively mitigate this attack by improving the detection process and efficiently leveraging human expertise.
arXiv Detail & Related papers (2020-01-13T13:54:36Z) - Deep Learning-Based Intrusion Detection System for Advanced Metering
Infrastructure [0.0]
The smart grid is exposed to a wide variety of threats that could be translated into cyber-attacks.
In this paper, we develop a deep learning-based intrusion detection system to defend against cyber-attacks.
arXiv Detail & Related papers (2019-12-31T21:06:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.