Real-World Semantic Grasping Detection
- URL: http://arxiv.org/abs/2111.10522v1
- Date: Sat, 20 Nov 2021 05:57:22 GMT
- Title: Real-World Semantic Grasping Detection
- Authors: Mingshuai Dong, Shimin Wei, Jianqin Yin, Xiuli Yu
- Abstract summary: We propose an end-to-end semantic grasping detection model, which can accomplish both semantic recognition and grasping detection.
We also design a target feature filtering mechanism, which only maintains the features of a single object according to the semantic information for grasping detection.
Experimental results show that the proposed method can achieve 98.38% accuracy in Cornell grasping dataset.
- Score: 0.34410212782758054
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reducing the scope of grasping detection according to the semantic
information of the target is significant to improve the accuracy of the
grasping detection model and expand its application. Researchers have been
trying to combine these capabilities in an end-to-end network to grasp specific
objects in a cluttered scene efficiently. In this paper, we propose an
end-to-end semantic grasping detection model, which can accomplish both
semantic recognition and grasping detection. And we also design a target
feature filtering mechanism, which only maintains the features of a single
object according to the semantic information for grasping detection. This
method effectively reduces the background features that are weakly correlated
to the target object, thus making the features more unique and guaranteeing the
accuracy and efficiency of grasping detection. Experimental results show that
the proposed method can achieve 98.38% accuracy in Cornell grasping dataset
Furthermore, our results on different datasets or evaluation metrics show the
domain adaptability of our method over the state-of-the-art.
Related papers
- Better Sampling, towards Better End-to-end Small Object Detection [7.7473020808686694]
Small object detection remains unsatisfactory due to limited characteristics and high density and mutual overlap.
We propose methods enhancing sampling within an end-to-end framework.
Our model demonstrates a significant enhancement, achieving a 2.9% increase in average precision (AP) over the state-of-the-art (SOTA) on the VisDrone dataset.
arXiv Detail & Related papers (2024-05-17T04:37:44Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
We present an in-depth evaluation of an object detection model that integrates the LSKNet backbone with the DiffusionDet head.
The proposed model achieves a mean average precision (MAP) of approximately 45.7%, which is a significant improvement.
This advancement underscores the effectiveness of the proposed modifications and sets a new benchmark in aerial image analysis.
arXiv Detail & Related papers (2023-11-21T19:49:13Z) - Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
Unsupervised object discovery is promising due to its ability to discover objects in a generic manner.
We design a semantic-guided self-supervised learning model to extract high-level semantic features from images.
We introduce Principal Component Analysis (PCA) to localize object regions.
arXiv Detail & Related papers (2023-07-07T04:03:48Z) - Information-Theoretic Odometry Learning [83.36195426897768]
We propose a unified information theoretic framework for learning-motivated methods aimed at odometry estimation.
The proposed framework provides an elegant tool for performance evaluation and understanding in information-theoretic language.
arXiv Detail & Related papers (2022-03-11T02:37:35Z) - Slender Object Detection: Diagnoses and Improvements [74.40792217534]
In this paper, we are concerned with the detection of a particular type of objects with extreme aspect ratios, namely textbfslender objects.
For a classical object detection method, a drastic drop of $18.9%$ mAP on COCO is observed, if solely evaluated on slender objects.
arXiv Detail & Related papers (2020-11-17T09:39:42Z) - Efficient and accurate object detection with simultaneous classification
and tracking [1.4620086904601473]
We propose a detection framework based on simultaneous classification and tracking in the point stream.
In this framework, a tracker performs data association in sequences of the point cloud, guiding the detector to avoid redundant processing.
Experiments were conducted on the benchmark dataset, and the results showed that the proposed method outperforms original tracking-by-detection approaches.
arXiv Detail & Related papers (2020-07-04T10:22:33Z) - Adaptive Object Detection with Dual Multi-Label Prediction [78.69064917947624]
We propose a novel end-to-end unsupervised deep domain adaptation model for adaptive object detection.
The model exploits multi-label prediction to reveal the object category information in each image.
We introduce a prediction consistency regularization mechanism to assist object detection.
arXiv Detail & Related papers (2020-03-29T04:23:22Z) - BiDet: An Efficient Binarized Object Detector [96.19708396510894]
We propose a binarized neural network learning method called BiDet for efficient object detection.
Our BiDet fully utilizes the representational capacity of the binary neural networks for object detection by redundancy removal.
Our method outperforms the state-of-the-art binary neural networks by a sizable margin.
arXiv Detail & Related papers (2020-03-09T08:16:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.