論文の概要: Unsupervised Domain Adaptation for RF-based Gesture Recognition
- arxiv url: http://arxiv.org/abs/2111.10602v2
- Date: Sat, 16 Nov 2024 12:31:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:27:42.005597
- Title: Unsupervised Domain Adaptation for RF-based Gesture Recognition
- Title(参考訳): RFに基づくジェスチャー認識のための教師なし領域適応
- Authors: Bin-Bin Zhang, Dongheng Zhang, Yadong Li, Yang Hu, Yan Chen,
- Abstract要約: RFに基づくジェスチャー認識のための教師なしドメイン適応フレームワークを提案する。
まず、モデルトレーニングに未ラベルデータを利用するために、擬似ラベルと整合正則化を提案する。
次に、RF信号の特性に基づいて、2つの対応するデータ拡張手法を設計し、一貫性の正則化の性能を高める。
- 参考スコア(独自算出の注目度): 14.523667781155666
- License:
- Abstract: Human gesture recognition with Radio Frequency (RF) signals has attained acclaim due to the omnipresence, privacy protection, and broad coverage nature of RF signals. These gesture recognition systems rely on neural networks trained with a large number of labeled data. However, the recognition model trained with data under certain conditions would suffer from significant performance degradation when applied in practical deployment, which limits the application of gesture recognition systems. In this paper, we propose an unsupervised domain adaptation framework for RF-based gesture recognition aiming to enhance the performance of the recognition model in new conditions by making effective use of the unlabeled data from new conditions. We first propose pseudo-labeling and consistency regularization to utilize unlabeled data for model training and eliminate the feature discrepancies in different domains. Then we propose a confidence constraint loss to enhance the effectiveness of pseudo-labeling, and design two corresponding data augmentation methods based on the characteristic of the RF signals to strengthen the performance of the consistency regularization, which can make the framework more effective and robust. Furthermore, we propose a cross-match loss to integrate the pseudo-labeling and consistency regularization, which makes the whole framework simple yet effective. Extensive experiments demonstrate that the proposed framework could achieve 4.35% and 2.25% accuracy improvement comparing with the state-of-the-art methods on public WiFi dataset and millimeter wave (mmWave) radar dataset, respectively.
- Abstract(参考訳): 電波周波数(RF)信号を用いた人間のジェスチャー認識は、不明瞭さ、プライバシー保護、およびRF信号の広範囲性により評価されている。
これらのジェスチャー認識システムは、多数のラベル付きデータでトレーニングされたニューラルネットワークに依存している。
しかし、特定の条件下でデータで訓練された認識モデルは、実際の配置に適用した場合、大幅な性能劣化に悩まされ、ジェスチャー認識システムの適用が制限される。
本稿では,新しい条件下での認識モデルの性能向上を目的とした,RFに基づくジェスチャー認識のための教師なしドメイン適応フレームワークを提案する。
まず、モデルトレーニングにラベルのないデータを使用し、異なる領域における特徴の相違を取り除くために、擬似ラベルと整合正則化を提案する。
次に、疑似ラベルの有効性を高めるための信頼性制約損失を提案し、RF信号の特性に基づく2つの対応するデータ拡張手法を設計し、一貫性の正則化の性能を高めることにより、フレームワークをより効果的かつ堅牢にする。
さらに、擬似ラベルと一貫性の正則化を統合するために、クロスマッチ損失を提案する。
大規模な実験により、提案フレームワークは、パブリックWiFiデータセットとミリ波(mmWave)レーダーデータセットの最先端手法と比較して、それぞれ4.35%と2.25%の精度向上を達成できることが示された。
関連論文リスト
- Exploiting Low-confidence Pseudo-labels for Source-free Object Detection [54.98300313452037]
Source-free Object Detection (SFOD) は、ラベル付きソースデータにアクセスすることなく、未ラベルのターゲットドメインにソーストレーニングされた検出器を適応することを目的としている。
現在のSFOD法は適応相におけるしきい値に基づく擬似ラベル手法を用いる。
疑似ラベルを最大限に活用するために,高信頼度と低信頼度しきい値を導入する手法を提案する。
論文 参考訳(メタデータ) (2023-10-19T12:59:55Z) - PREM: A Simple Yet Effective Approach for Node-Level Graph Anomaly
Detection [65.24854366973794]
ノードレベルのグラフ異常検出(GAD)は、医学、ソーシャルネットワーク、eコマースなどの分野におけるグラフ構造化データから異常ノードを特定する上で重要な役割を果たす。
本稿では,GADの効率を向上させるために,PREM (preprocessing and Matching) という簡単な手法を提案する。
我々のアプローチは、強力な異常検出機能を維持しながら、GADを合理化し、時間とメモリ消費を削減します。
論文 参考訳(メタデータ) (2023-10-18T02:59:57Z) - Unsupervised Visible-Infrared Person ReID by Collaborative Learning with Neighbor-Guided Label Refinement [53.044703127757295]
教師なし学習 可視赤外人物再識別 (USL-VI-ReID) は、ラベルなしのクロスモダリティデータセットからモダリティ不変の特徴を学習することを目的としている。
本稿では,生成したラベルを1つのモダリティからそれに対応するモダリティに同時に割り当てる,Dual Optimal Transport Label Assignment (DOTLA) フレームワークを提案する。
提案したDOTLA機構は、相互強化と相互モダリティデータアソシエーションの効率的な解を定式化することにより、不十分でノイズの多いラベルアソシエーションの副作用を効果的に低減することができる。
論文 参考訳(メタデータ) (2023-05-22T04:40:30Z) - Uncertainty-Aware Source-Free Adaptive Image Super-Resolution with Wavelet Augmentation Transformer [60.31021888394358]
Unsupervised Domain Adaptation (UDA)は、現実世界の超解像(SR)における領域ギャップ問題に効果的に対処できる
本稿では,画像SR(SODA-SR)のためのSOurce-free Domain Adaptationフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-31T03:14:44Z) - Federated Radio Frequency Fingerprinting with Model Transfer and
Adaptation [26.646820912136416]
本稿では,モデル転送と適応という新しい手法を用いたRFフィンガープリントアルゴリズムを提案する。
提案アルゴリズムは、RFフィンガープリントに畳み込み層間の密接な接続を導入し、学習精度を高め、モデルの複雑さを低減する。
現状のRFフィンガープリンティングアルゴリズムと比較して,提案アルゴリズムは最大15%の性能向上で予測性能を大幅に向上させることができる。
論文 参考訳(メタデータ) (2023-02-22T14:55:30Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
表情認識のためのSFUDA法を提案する。
本手法は,自己教師付き事前学習を利用して,対象データから優れた特徴表現を学習する。
提案手法の有効性を4つの適応方式で検証し,FERに適用した場合,既存のSFUDA法より一貫して優れていることを示す。
論文 参考訳(メタデータ) (2022-10-11T08:24:50Z) - Boosting Cross-Domain Speech Recognition with Self-Supervision [35.01508881708751]
自動音声認識(ASR)のクロスドメイン性能は,トレーニングとテストのミスマッチにより著しく損なわれる可能性がある。
従来, 自己監督学習 (SSL) や擬似ラベル学習 (PL) は, 未ラベルデータの自己監督を利用してUDAに有効であることが示された。
この研究は、事前学習および微調整のパラダイムにおいて、ラベルなしデータを完全に活用する体系的なUDAフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-20T14:02:53Z) - Towards Domain-Independent and Real-Time Gesture Recognition Using
mmWave Signal [11.76969975145963]
DI-Gesture はドメインに依存しないリアルタイムの mmWave ジェスチャー認識システムである。
リアルタイムシナリオでは、DI-Gesutreの精度は平均推定時間2.87msで97%以上に達する。
論文 参考訳(メタデータ) (2021-11-11T13:28:28Z) - A Generalizable Model-and-Data Driven Approach for Open-Set RFF
Authentication [74.63333951647581]
高周波指紋(RFF)は、低コストな物理層認証を実現するための有望な解決策である。
RFF抽出と識別のために機械学習に基づく手法が提案されている。
生受信信号からRFFを抽出するエンド・ツー・エンドのディープラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2021-08-10T03:59:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。