論文の概要: Constrained Deep One-Class Feature Learning For Classifying Imbalanced
Medical Images
- arxiv url: http://arxiv.org/abs/2111.10610v1
- Date: Sat, 20 Nov 2021 15:25:24 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-23 14:55:45.859483
- Title: Constrained Deep One-Class Feature Learning For Classifying Imbalanced
Medical Images
- Title(参考訳): 不均衡医用画像分類のための制約付き深部1級特徴学習
- Authors: Long Gao, Chang Liu, Dooman Arefan, Ashok Panigrahy, Shandong Wu
- Abstract要約: データの不均衡問題に対処するために、一級分類が注目を集めている。
本稿では,コンパクトな特徴を学習するための新しい深層学習手法を提案する。
提案手法は,各クラスに関連するより関連性の高い特徴を学習し,多数派と少数派のサンプルを識別しやすくする。
- 参考スコア(独自算出の注目度): 4.211466076086617
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Medical image data are usually imbalanced across different classes. One-class
classification has attracted increasing attention to address the data imbalance
problem by distinguishing the samples of the minority class from the majority
class. Previous methods generally aim to either learn a new feature space to
map training samples together or to fit training samples by autoencoder-like
models. These methods mainly focus on capturing either compact or descriptive
features, where the information of the samples of a given one class is not
sufficiently utilized. In this paper, we propose a novel deep learning-based
method to learn compact features by adding constraints on the bottleneck
features, and to preserve descriptive features by training an autoencoder at
the same time. Through jointly optimizing the constraining loss and the
autoencoder's reconstruction loss, our method can learn more relevant features
associated with the given class, making the majority and minority samples more
distinguishable. Experimental results on three clinical datasets (including the
MRI breast images, FFDM breast images and chest X-ray images) obtains
state-of-art performance compared to previous methods.
- Abstract(参考訳): 医療画像データは、通常、異なるクラス間で不均衡である。
マイノリティクラスのサンプルを多数派クラスと区別することでデータ不均衡問題に対処するため、一級分類が注目されている。
従来の手法では、トレーニングサンプルをマッピングするための新機能スペースの学習や、オートエンコーダのようなモデルによるトレーニングサンプルの適合を目標としていた。
これらの手法は主に、与えられた1つのクラスのサンプルの情報が十分に活用されないコンパクトまたは記述的特徴を捉えることに重点を置いている。
本稿では,ボトルネック特性の制約を付加することでコンパクトな特徴を学習し,同時にオートエンコーダを訓練することで記述的特徴を保存できる,新しい深層学習型手法を提案する。
制約損失と自己エンコーダの再構成損失を協調的に最適化することにより,本手法はクラスに関連するより関連性の高い特徴を学習し,多数派と少数派のサンプルを識別しやすくする。
MRI乳房画像, FFDM乳房画像, 胸部X線画像を含む3つの臨床データセットの実験結果から, 従来法と比較して最先端の成績が得られた。
関連論文リスト
- Preview-based Category Contrastive Learning for Knowledge Distillation [53.551002781828146]
知識蒸留(PCKD)のための新しい予見型カテゴリーコントラスト学習法を提案する。
まず、インスタンスレベルの特徴対応と、インスタンスの特徴とカテゴリ中心の関係の両方の構造的知識を蒸留する。
カテゴリ表現を明示的に最適化し、インスタンスとカテゴリの表現を明確に関連付けることができる。
論文 参考訳(メタデータ) (2024-10-18T03:31:00Z) - Convolutional autoencoder-based multimodal one-class classification [80.52334952912808]
1クラス分類は、単一のクラスからのデータを用いた学習のアプローチを指す。
マルチモーダルデータに適した深層学習一クラス分類法を提案する。
論文 参考訳(メタデータ) (2023-09-25T12:31:18Z) - Self-Supervised Pre-Training with Contrastive and Masked Autoencoder
Methods for Dealing with Small Datasets in Deep Learning for Medical Imaging [8.34398674359296]
医用画像の深層学習は、診断ミスのリスクを最小限に抑え、放射線医の作業量を減らし、診断を加速する可能性がある。
このようなディープラーニングモデルのトレーニングには,すべてのトレーニングサンプルに対するアノテーションを備えた,大規模かつ正確なデータセットが必要です。
この課題に対処するために、ディープラーニングモデルは、自己教師付き学習の分野からのメソッドを使用してアノテーションなしで、大規模な画像データセット上で事前トレーニングすることができる。
論文 参考訳(メタデータ) (2023-08-12T11:31:01Z) - Disruptive Autoencoders: Leveraging Low-level features for 3D Medical
Image Pre-training [51.16994853817024]
本研究は、3Dラジオグラフィ画像のための効果的な事前学習フレームワークの設計に焦点をあてる。
ローカルマスキングと低レベルの摂動の組み合わせによって生成された破壊から、オリジナルのイメージを再構築しようとする事前トレーニングフレームワークであるDisruptive Autoencodersを紹介する。
提案する事前トレーニングフレームワークは、複数のダウンストリームタスクでテストされ、最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-07-31T17:59:42Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
医用画像セグメンテーションのための階層化グループ理論を用いた半教師付きコントラスト学習フレームワークARCOを提案する。
まず、分散還元推定の概念を用いてARCOを構築することを提案し、特定の分散還元技術が画素/ボクセルレベルのセグメンテーションタスクにおいて特に有用であることを示す。
5つの2D/3D医療データセットと3つのセマンティックセグメンテーションデータセットのラベル設定が異なる8つのベンチマークで、我々のアプローチを実験的に検証する。
論文 参考訳(メタデータ) (2023-02-03T13:50:25Z) - One-shot Weakly-Supervised Segmentation in Medical Images [12.184590794655517]
ワンショットおよび弱教師付き設定による3次元医用画像セグメンテーションの革新的枠組みを提案する。
注釈付きボリュームからラベルなしの3D画像へスクリブルを投影するために,伝搬再構成ネットワークを提案する。
デュアルレベルの特徴記述モジュールは、解剖学的およびピクセルレベルの特徴に基づいて、スクリブルを洗練させるように設計されている。
論文 参考訳(メタデータ) (2021-11-21T09:14:13Z) - Learn to Ignore: Domain Adaptation for Multi-Site MRI Analysis [1.3079444139643956]
本稿では,画像に含まれるスキャナ関連の特徴を無視し,分類タスクに関連する特徴を学習する新しい手法を提案する。
本手法は,多発性硬化症患者と健常者との分類作業において,最先端の領域適応法よりも優れていた。
論文 参考訳(メタデータ) (2021-10-13T15:40:50Z) - Enhancing Fine-Grained Classification for Low Resolution Images [97.82441158440527]
低解像度画像は、限られた情報内容の固有の課題と、サブカテゴリ分類に有用な詳細の欠如に悩まされる。
本研究では,補助情報を用いて分類の識別的特徴を学習する,新たな属性支援損失を提案する。
提案する損失関数により、モデルは属性レベルの分離性を取り入れながら、クラス固有の識別特徴を学習することができる。
論文 参考訳(メタデータ) (2021-05-01T13:19:02Z) - Multi-label Thoracic Disease Image Classification with Cross-Attention
Networks [65.37531731899837]
胸部X線画像から胸部疾患を自動分類するためのCAN(Cross-Attention Networks)を提案する。
また,クロスエントロピー損失を超える新たな損失関数を設計し,クラス間の不均衡を克服する。
論文 参考訳(メタデータ) (2020-07-21T14:37:00Z) - Melanoma Detection using Adversarial Training and Deep Transfer Learning [6.22964000148682]
皮膚病変画像の自動分類のための2段階の枠組みを提案する。
第1段階では、条件付き画像合成のタスクにおいて、データ分布のクラス間変動を利用する。
第2段階では,皮膚病変分類のための深部畳み込みニューラルネットワークを訓練する。
論文 参考訳(メタデータ) (2020-04-14T22:46:20Z) - Additive Angular Margin for Few Shot Learning to Classify Clinical
Endoscopy Images [42.74958357195011]
我々は、トレーニングデータが少なくなり、未知のデータセットからテストサンプルのラベルクラスを予測するために使用できる、数ショットの学習手法を提案する。
我々は,マルチセンター,マルチオーガナイズド,マルチモーダル内視鏡データの大規模コホートにおけるいくつかの確立された手法との比較を行った。
論文 参考訳(メタデータ) (2020-03-23T00:20:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。