Decorrelated Variable Importance
- URL: http://arxiv.org/abs/2111.10853v1
- Date: Sun, 21 Nov 2021 16:31:36 GMT
- Title: Decorrelated Variable Importance
- Authors: Isabella Verdinelli and Larry Wasserman
- Abstract summary: We propose a method for mitigating the effect of correlation by defining a modified version of LOCO.
This new parameter is difficult to estimate nonparametrically, but we show how to estimate it using semiparametric models.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Because of the widespread use of black box prediction methods such as random
forests and neural nets, there is renewed interest in developing methods for
quantifying variable importance as part of the broader goal of interpretable
prediction. A popular approach is to define a variable importance parameter -
known as LOCO (Leave Out COvariates) - based on dropping covariates from a
regression model. This is essentially a nonparametric version of R-squared.
This parameter is very general and can be estimated nonparametrically, but it
can be hard to interpret because it is affected by correlation between
covariates. We propose a method for mitigating the effect of correlation by
defining a modified version of LOCO. This new parameter is difficult to
estimate nonparametrically, but we show how to estimate it using semiparametric
models.
Related papers
- Semiparametric conformal prediction [79.6147286161434]
Risk-sensitive applications require well-calibrated prediction sets over multiple, potentially correlated target variables.
We treat the scores as random vectors and aim to construct the prediction set accounting for their joint correlation structure.
We report desired coverage and competitive efficiency on a range of real-world regression problems.
arXiv Detail & Related papers (2024-11-04T14:29:02Z) - Multivariate root-n-consistent smoothing parameter free matching estimators and estimators of inverse density weighted expectations [51.000851088730684]
We develop novel modifications of nearest-neighbor and matching estimators which converge at the parametric $sqrt n $-rate.
We stress that our estimators do not involve nonparametric function estimators and in particular do not rely on sample-size dependent parameters smoothing.
arXiv Detail & Related papers (2024-07-11T13:28:34Z) - Relaxed Quantile Regression: Prediction Intervals for Asymmetric Noise [51.87307904567702]
Quantile regression is a leading approach for obtaining such intervals via the empirical estimation of quantiles in the distribution of outputs.
We propose Relaxed Quantile Regression (RQR), a direct alternative to quantile regression based interval construction that removes this arbitrary constraint.
We demonstrate that this added flexibility results in intervals with an improvement in desirable qualities.
arXiv Detail & Related papers (2024-06-05T13:36:38Z) - Challenges in Variable Importance Ranking Under Correlation [6.718144470265263]
We present a comprehensive simulation study investigating the impact of feature correlation on the assessment of variable importance.
While there is always no correlation between knockoff variables and its corresponding predictor variables, we prove that the correlation increases linearly beyond a certain correlation threshold between the predictor variables.
arXiv Detail & Related papers (2024-02-05T19:02:13Z) - TIC-TAC: A Framework for Improved Covariance Estimation in Deep Heteroscedastic Regression [109.69084997173196]
Deepscedastic regression involves jointly optimizing the mean and covariance of the predicted distribution using the negative log-likelihood.
Recent works show that this may result in sub-optimal convergence due to the challenges associated with covariance estimation.
We study two questions: (1) Does the predicted covariance truly capture the randomness of the predicted mean?
Our results show that not only does TIC accurately learn the covariance, it additionally facilitates an improved convergence of the negative log-likelihood.
arXiv Detail & Related papers (2023-10-29T09:54:03Z) - Linked shrinkage to improve estimation of interaction effects in
regression models [0.0]
We develop an estimator that adapts well to two-way interaction terms in a regression model.
We evaluate the potential of the model for inference, which is notoriously hard for selection strategies.
Our models can be very competitive to a more advanced machine learner, like random forest, even for fairly large sample sizes.
arXiv Detail & Related papers (2023-09-25T10:03:39Z) - Exploring Local Explanations of Nonlinear Models Using Animated Linear
Projections [5.524804393257921]
We show how to use eXplainable AI (XAI) to shed light on how a model use predictors to arrive at a prediction.
To understand how the interaction between predictors affects the variable importance estimate, we can convert LVAs into linear projections.
The approach is illustrated with examples from categorical (penguin species, chocolate types) and quantitative (soccer/football salaries, house prices) response models.
arXiv Detail & Related papers (2022-05-11T09:11:02Z) - Benign-Overfitting in Conditional Average Treatment Effect Prediction
with Linear Regression [14.493176427999028]
We study the benign overfitting theory in the prediction of the conditional average treatment effect (CATE) with linear regression models.
We show that the T-learner fails to achieve the consistency except the random assignment, while the IPW-learner converges the risk to zero if the propensity score is known.
arXiv Detail & Related papers (2022-02-10T18:51:52Z) - Multivariate Probabilistic Regression with Natural Gradient Boosting [63.58097881421937]
We propose a Natural Gradient Boosting (NGBoost) approach based on nonparametrically modeling the conditional parameters of the multivariate predictive distribution.
Our method is robust, works out-of-the-box without extensive tuning, is modular with respect to the assumed target distribution, and performs competitively in comparison to existing approaches.
arXiv Detail & Related papers (2021-06-07T17:44:49Z) - SUMO: Unbiased Estimation of Log Marginal Probability for Latent
Variable Models [80.22609163316459]
We introduce an unbiased estimator of the log marginal likelihood and its gradients for latent variable models based on randomized truncation of infinite series.
We show that models trained using our estimator give better test-set likelihoods than a standard importance-sampling based approach for the same average computational cost.
arXiv Detail & Related papers (2020-04-01T11:49:30Z) - Double/Debiased Machine Learning for Treatment and Causal Parameters [5.405360145866329]
We show how to remove the regularization bias by solving auxiliary prediction problems via ML tools.
The resulting method could be called a "double ML" method because it relies on estimating primary and auxiliary predictive models.
This allows us to use a very broad set of ML predictive methods in solving the auxiliary and main prediction problems.
arXiv Detail & Related papers (2016-07-30T01:58:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.