TIC-TAC: A Framework for Improved Covariance Estimation in Deep Heteroscedastic Regression
- URL: http://arxiv.org/abs/2310.18953v2
- Date: Fri, 31 May 2024 14:51:58 GMT
- Title: TIC-TAC: A Framework for Improved Covariance Estimation in Deep Heteroscedastic Regression
- Authors: Megh Shukla, Mathieu Salzmann, Alexandre Alahi,
- Abstract summary: Deepscedastic regression involves jointly optimizing the mean and covariance of the predicted distribution using the negative log-likelihood.
Recent works show that this may result in sub-optimal convergence due to the challenges associated with covariance estimation.
We study two questions: (1) Does the predicted covariance truly capture the randomness of the predicted mean?
Our results show that not only does TIC accurately learn the covariance, it additionally facilitates an improved convergence of the negative log-likelihood.
- Score: 109.69084997173196
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Deep heteroscedastic regression involves jointly optimizing the mean and covariance of the predicted distribution using the negative log-likelihood. However, recent works show that this may result in sub-optimal convergence due to the challenges associated with covariance estimation. While the literature addresses this by proposing alternate formulations to mitigate the impact of the predicted covariance, we focus on improving the predicted covariance itself. We study two questions: (1) Does the predicted covariance truly capture the randomness of the predicted mean? (2) In the absence of supervision, how can we quantify the accuracy of covariance estimation? We address (1) with a Taylor Induced Covariance (TIC), which captures the randomness of the predicted mean by incorporating its gradient and curvature through the second order Taylor polynomial. Furthermore, we tackle (2) by introducing a Task Agnostic Correlations (TAC) metric, which combines the notion of correlations and absolute error to evaluate the covariance. We evaluate TIC-TAC across multiple experiments spanning synthetic and real-world datasets. Our results show that not only does TIC accurately learn the covariance, it additionally facilitates an improved convergence of the negative log-likelihood. Our code is available at https://github.com/vita-epfl/TIC-TAC
Related papers
- Towards Self-Supervised Covariance Estimation in Deep Heteroscedastic Regression [102.24287051757469]
We study self-supervised covariance estimation in deep heteroscedastic regression.
We derive an upper bound on the 2-Wasserstein distance between normal distributions.
Experiments over a wide range of synthetic and real datasets demonstrate that the proposed 2-Wasserstein bound coupled with pseudo label annotations results in a computationally cheaper yet accurate deep heteroscedastic regression.
arXiv Detail & Related papers (2025-02-14T22:37:11Z) - Online Covariance Estimation in Nonsmooth Stochastic Approximation [14.818683408659764]
We consider applying approximation (SA) methods to solve nonsmooth variational inclusion problems.
Our convergence construction establish the best-known for statistical estimation methods.
arXiv Detail & Related papers (2025-02-07T20:16:51Z) - Semiparametric conformal prediction [79.6147286161434]
Risk-sensitive applications require well-calibrated prediction sets over multiple, potentially correlated target variables.
We treat the scores as random vectors and aim to construct the prediction set accounting for their joint correlation structure.
We report desired coverage and competitive efficiency on a range of real-world regression problems.
arXiv Detail & Related papers (2024-11-04T14:29:02Z) - A Geometric Unification of Distributionally Robust Covariance Estimators: Shrinking the Spectrum by Inflating the Ambiguity Set [20.166217494056916]
We propose a principled approach to construct covariance estimators without imposing restrictive assumptions.
We show that our robust estimators are efficiently computable and consistent.
Numerical experiments based on synthetic and real data show that our robust estimators are competitive with state-of-the-art estimators.
arXiv Detail & Related papers (2024-05-30T15:01:18Z) - Collaborative Heterogeneous Causal Inference Beyond Meta-analysis [68.4474531911361]
We propose a collaborative inverse propensity score estimator for causal inference with heterogeneous data.
Our method shows significant improvements over the methods based on meta-analysis when heterogeneity increases.
arXiv Detail & Related papers (2024-04-24T09:04:36Z) - Covariance Estimators for the ROOT-SGD Algorithm in Online Learning [7.00422423634143]
We develop two estimators for the algorithm covariance of ROOT-SGD.
Our first estimator adopts the idea of plug-in. For each unknown component in the formula of the covariance, we substitute it with its empirical counterpart.
Our second estimator is a Hessian-free estimator that overcomes the limitation.
arXiv Detail & Related papers (2022-12-02T15:55:52Z) - On the Strong Correlation Between Model Invariance and Generalization [54.812786542023325]
Generalization captures a model's ability to classify unseen data.
Invariance measures consistency of model predictions on transformations of the data.
From a dataset-centric view, we find a certain model's accuracy and invariance linearly correlated on different test sets.
arXiv Detail & Related papers (2022-07-14T17:08:25Z) - Benign-Overfitting in Conditional Average Treatment Effect Prediction
with Linear Regression [14.493176427999028]
We study the benign overfitting theory in the prediction of the conditional average treatment effect (CATE) with linear regression models.
We show that the T-learner fails to achieve the consistency except the random assignment, while the IPW-learner converges the risk to zero if the propensity score is known.
arXiv Detail & Related papers (2022-02-10T18:51:52Z) - Multivariate Probabilistic Regression with Natural Gradient Boosting [63.58097881421937]
We propose a Natural Gradient Boosting (NGBoost) approach based on nonparametrically modeling the conditional parameters of the multivariate predictive distribution.
Our method is robust, works out-of-the-box without extensive tuning, is modular with respect to the assumed target distribution, and performs competitively in comparison to existing approaches.
arXiv Detail & Related papers (2021-06-07T17:44:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.