Quanto: Optimizing Quantum Circuits with Automatic Generation of Circuit
Identities
- URL: http://arxiv.org/abs/2111.11387v1
- Date: Mon, 22 Nov 2021 18:00:03 GMT
- Title: Quanto: Optimizing Quantum Circuits with Automatic Generation of Circuit
Identities
- Authors: Jessica Pointing, Oded Padon, Zhihao Jia, Henry Ma, Auguste Hirth,
Jens Palsberg, Alex Aiken
- Abstract summary: Existing quantum compilers focus on mapping a quantum circuit to a quantum device and its native quantum gates.
We propose Quanto, the first quantum that automatically generates circuit identities.
- Score: 4.910512799378831
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Existing quantum compilers focus on mapping a logical quantum circuit to a
quantum device and its native quantum gates. Only simple circuit identities are
used to optimize the quantum circuit during the compilation process. This
approach misses more complex circuit identities, which could be used to
optimize the quantum circuit further. We propose Quanto, the first quantum
optimizer that automatically generates circuit identities. Quanto takes as
input a gate set and generates provably correct circuit identities for the gate
set. Quanto's automatic generation of circuit identities includes single-qubit
and two-qubit gates, which leads to a new database of circuit identities, some
of which are novel to the best of our knowledge. In addition to the generation
of new circuit identities, Quanto's optimizer applies such circuit identities
to quantum circuits and finds optimized quantum circuits that have not been
discovered by other quantum compilers, including IBM Qiskit and Cambridge
Quantum Computing Tket. Quanto's database of circuit identities could be
applied to improve existing quantum compilers and Quanto can be used to
generate identity databases for new gate sets.
Related papers
- Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - Lightcone Bounds for Quantum Circuit Mapping via Uncomplexity [1.0360348400670518]
We show that a minimal SWAP-gate count for executing a quantum circuit on a device emerges via the minimization of the distance between quantum states.
This work constitutes the first use of quantum circuit uncomplexity to practically-relevant quantum computing.
arXiv Detail & Related papers (2024-02-01T10:32:05Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Quantivine: A Visualization Approach for Large-scale Quantum Circuit
Representation and Analysis [31.203764035373677]
We develop Quantivine, an interactive system for exploring and understanding quantum circuits.
A series of novel circuit visualizations are designed to uncover contextual details such as qubit provenance, parallelism, and entanglement.
The effectiveness of Quantivine is demonstrated through two usage scenarios of quantum circuits with up to 100 qubits.
arXiv Detail & Related papers (2023-07-18T04:51:28Z) - Parametric Synthesis of Computational Circuits for Complex Quantum
Algorithms [0.0]
The purpose of our quantum synthesizer is enabling users to implement quantum algorithms using higher-level commands.
The proposed approach for implementing quantum algorithms has a potential application in the field of machine learning.
arXiv Detail & Related papers (2022-09-20T06:25:47Z) - Exploring ab initio machine synthesis of quantum circuits [0.0]
Gate-level quantum circuits are often derived manually from higher level algorithms.
Here we explore methods for the ab initio creation of circuits within a machine.
arXiv Detail & Related papers (2022-06-22T17:48:29Z) - Quantum circuit debugging and sensitivity analysis via local inversions [62.997667081978825]
We present a technique that pinpoints the sections of a quantum circuit that affect the circuit output the most.
We demonstrate the practicality and efficacy of the proposed technique by applying it to example algorithmic circuits implemented on IBM quantum machines.
arXiv Detail & Related papers (2022-04-12T19:39:31Z) - Depth-efficient proofs of quantumness [77.34726150561087]
A proof of quantumness is a type of challenge-response protocol in which a classical verifier can efficiently certify quantum advantage of an untrusted prover.
In this paper, we give two proof of quantumness constructions in which the prover need only perform constant-depth quantum circuits.
arXiv Detail & Related papers (2021-07-05T17:45:41Z) - Fast Swapping in a Quantum Multiplier Modelled as a Queuing Network [64.1951227380212]
We propose that quantum circuits can be modeled as queuing networks.
Our method is scalable and has the potential speed and precision necessary for large scale quantum circuit compilation.
arXiv Detail & Related papers (2021-06-26T10:55:52Z) - Quantum Gate Pattern Recognition and Circuit Optimization for Scientific
Applications [1.6329956884407544]
We introduce two ideas for circuit optimization and combine them in a multi-tiered quantum circuit optimization protocol called AQCEL.
AQCEL is deployed on an iterative and efficient quantum algorithm designed to model final state radiation in high energy physics.
Our technique is generic and can be useful for a wide variety of quantum algorithms.
arXiv Detail & Related papers (2021-02-19T16:20:31Z) - QUANTIFY: A framework for resource analysis and design verification of
quantum circuits [69.43216268165402]
QUANTIFY is an open-source framework for the quantitative analysis of quantum circuits.
It is based on Google Cirq and is developed with Clifford+T circuits in mind.
For benchmarking purposes QUANTIFY includes quantum memory and quantum arithmetic circuits.
arXiv Detail & Related papers (2020-07-21T15:36:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.