論文の概要: CytoImageNet: A large-scale pretraining dataset for bioimage transfer
learning
- arxiv url: http://arxiv.org/abs/2111.11646v2
- Date: Wed, 24 Nov 2021 04:26:05 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-25 13:18:54.423137
- Title: CytoImageNet: A large-scale pretraining dataset for bioimage transfer
learning
- Title(参考訳): CytoImageNet: バイオ画像伝達学習のための大規模事前学習データセット
- Authors: Stanley Bryan Z. Hua, Alex X. Lu, Alan M. Moses
- Abstract要約: CytoImageNetは大規模な顕微鏡画像データセット(890K画像、894クラス)
我々は,CytoImageNetがImageNetで訓練された機能では利用できない情報をキャプチャーする証拠を示す。
データセットはhttps://www.kaggle.com/stanleyhua/cytoimagenet.comで公開されている。
- 参考スコア(独自算出の注目度): 1.7188280334580197
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Motivation: In recent years, image-based biological assays have steadily
become high-throughput, sparking a need for fast automated methods to extract
biologically-meaningful information from hundreds of thousands of images.
Taking inspiration from the success of ImageNet, we curate CytoImageNet, a
large-scale dataset of openly-sourced and weakly-labeled microscopy images
(890K images, 894 classes). Pretraining on CytoImageNet yields features that
are competitive to ImageNet features on downstream microscopy classification
tasks. We show evidence that CytoImageNet features capture information not
available in ImageNet-trained features. The dataset is made available at
https://www.kaggle.com/stanleyhua/cytoimagenet.
- Abstract(参考訳): モチベーション: 近年、画像ベースの生物学的アッセイが着実に普及し、何十万もの画像から生物学的に意味のある情報を抽出するための高速自動化手法の必要性が高まっている。
ImageNetの成功からインスピレーションを得て、オープンソースおよび弱ラベルの顕微鏡画像(890Kイメージ、894クラス)の大規模データセットであるCytoImageNetをキュレートする。
CytoImageNetの事前トレーニングは、下流の顕微鏡分類タスクでImageNet機能と競合する機能を提供する。
我々は,CytoImageNetがImageNetで訓練された機能では利用できない情報をキャプチャーする証拠を示す。
データセットはhttps://www.kaggle.com/stanleyhua/cytoimagenetで利用可能である。
関連論文リスト
- Source Matters: Source Dataset Impact on Model Robustness in Medical Imaging [14.250975981451914]
我々は、ImageNetとRadImageNetが同等の分類性能を達成することを示す。
ImageNetは、共同ファウンダーに過度にフィットする傾向にある。
ImageNet-pretrained modelを使用する研究者は、モデルを再検討することを推奨する。
論文 参考訳(メタデータ) (2024-03-07T13:36:15Z) - Internet Explorer: Targeted Representation Learning on the Open Web [121.02587846761627]
現代のビジョンモデルは通常、大規模で静的なデータセットで事前訓練された微調整の汎用モデルに依存している。
本稿では,インターネットを動的に活用して,手作業で極めてうまく動作する小規模モデルを迅速に訓練することを提案する。
当社のアプローチはInternet Explorerと呼ばれ,Webを自己教師型の方法で探索することで,望ましいターゲットデータセットのパフォーマンス向上に寄与する関連事例を段階的に見つける。
論文 参考訳(メタデータ) (2023-02-27T18:59:55Z) - Core Risk Minimization using Salient ImageNet [53.616101711801484]
私たちは、1000のImagenetクラスのコアとスプリアス機能をローカライズする100万人以上のソフトマスクを備えたSalient Imagenetデータセットを紹介します。
このデータセットを用いて、まず、いくつかのImagenet事前訓練されたモデル(総計42件)の素早い特徴に対する依存度を評価する。
次に、コアリスク最小化(CoRM)と呼ばれる新しい学習パラダイムを導入する。
論文 参考訳(メタデータ) (2022-03-28T01:53:34Z) - BigDatasetGAN: Synthesizing ImageNet with Pixel-wise Annotations [89.42397034542189]
我々は,GAN(Generative Adversarial Network)を介して,大規模ラベル付きデータセットを合成する。
我々は、ImageNetで訓練されたクラス条件生成モデルBigGANの画像サンプルを、すべての1kクラスに対して、クラス毎の5つのイメージを手動でアノテートする。
我々は、追加の8k実画像のセットをラベル付けして、新しいImageNetベンチマークを作成し、様々な設定でセグメンテーション性能を評価する。
論文 参考訳(メタデータ) (2022-01-12T20:28:34Z) - Improving Fractal Pre-training [0.76146285961466]
動的に生成されたフラクタル画像に基づく事前学習データセットを提案する。
実験により, フラクタルを用いたネットワークの微調整は, ImageNet事前訓練ネットワークの精度の92.7-98.1%に達することが示された。
論文 参考訳(メタデータ) (2021-10-06T22:39:51Z) - DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort [117.41383937100751]
現在のディープネットワークは、大規模なデータセットのトレーニングの恩恵を受ける、非常にデータハングリーです。
GAN潜入コードがどのようにデコードされ、イメージのセマンティックセグメンテーションを生成するかを示す。
これらの生成されたデータセットは、実際のデータセットと同じように、コンピュータビジョンアーキテクチャのトレーニングに使用できます。
論文 参考訳(メタデータ) (2021-04-13T20:08:29Z) - From ImageNet to Image Classification: Contextualizing Progress on
Benchmarks [99.19183528305598]
ImageNet作成プロセスにおける特定の設計選択が、結果のデータセットの忠実性に与える影響について検討する。
私たちの分析では、ノイズの多いデータ収集パイプラインが、結果のベンチマークと、それがプロキシとして機能する実世界のタスクとの間に、体系的なミスアライメントをもたらす可能性があることを指摘しています。
論文 参考訳(メタデータ) (2020-05-22T17:39:16Z) - Multi-task pre-training of deep neural networks for digital pathology [8.74883469030132]
私たちはまず、多くのデジタル病理データセットを22の分類タスクと約900kの画像のプールに組み立て、変換しました。
特徴抽出器として使用されるモデルは、ImageNet事前訓練されたモデルよりも大幅に改善されるか、同等のパフォーマンスを提供するかを示す。
論文 参考訳(メタデータ) (2020-05-05T08:50:17Z) - CRNet: Cross-Reference Networks for Few-Shot Segmentation [59.85183776573642]
少ないショットセグメンテーションは、少数のトレーニングイメージを持つ新しいクラスに一般化できるセグメンテーションモデルを学ぶことを目的としている。
相互参照機構により、我々のネットワークは2つの画像に共起する物体をよりよく見つけることができる。
PASCAL VOC 2012データセットの実験は、我々のネットワークが最先端のパフォーマンスを達成することを示す。
論文 参考訳(メタデータ) (2020-03-24T04:55:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。