論文の概要: U-shape Transformer for Underwater Image Enhancement
- arxiv url: http://arxiv.org/abs/2111.11843v1
- Date: Tue, 23 Nov 2021 13:15:56 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-24 21:30:15.257811
- Title: U-shape Transformer for Underwater Image Enhancement
- Title(参考訳): 水中画像強調用u字形変圧器
- Authors: Lintao Peng, Chunli Zhu, Liheng Bian
- Abstract要約: 本研究では,5004枚の画像対を含む大規模水中画像データセットを構築した。
UIEタスクに初めてトランスモデルを導入したU字型トランスを報告した。
コントラストと彩度をさらに向上するため、RGB, LAB, LCH色空間を組み合わせた新しいロス関数を設計した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The light absorption and scattering of underwater impurities lead to poor
underwater imaging quality. The existing data-driven based underwater image
enhancement (UIE) techniques suffer from the lack of a large-scale dataset
containing various underwater scenes and high-fidelity reference images.
Besides, the inconsistent attenuation in different color channels and space
areas is not fully considered for boosted enhancement. In this work, we
constructed a large-scale underwater image (LSUI) dataset including 5004 image
pairs, and reported an U-shape Transformer network where the transformer model
is for the first time introduced to the UIE task. The U-shape Transformer is
integrated with a channel-wise multi-scale feature fusion transformer (CMSFFT)
module and a spatial-wise global feature modeling transformer (SGFMT) module,
which reinforce the network's attention to the color channels and space areas
with more serious attenuation. Meanwhile, in order to further improve the
contrast and saturation, a novel loss function combining RGB, LAB and LCH color
spaces is designed following the human vision principle. The extensive
experiments on available datasets validate the state-of-the-art performance of
the reported technique with more than 2dB superiority.
- Abstract(参考訳): 水中不純物の光吸収と散乱は、水中イメージングの品質を低下させる。
既存のデータ駆動型水中画像強調(UIE)技術は、様々な水中シーンと高忠実度参照画像を含む大規模なデータセットが欠如している。
また、異なる色チャネルや空間領域における不整合減衰は、強化効果として完全には考慮されていない。
本研究では,5004枚の画像ペアを含む大規模水中画像(LSUI)データセットを構築し,UIEタスクに初めてトランスフォーマーモデルを導入したU字型トランスフォーマーネットワークを報告した。
U字形変換器は、チャネルワイドマルチスケール機能融合変換器(CMSFFT)モジュールと空間ワイドグローバル機能モデリング変換器(SGFMT)モジュールと統合されており、ネットワークの色チャネルや空間領域への注意をより深刻な減衰で強化する。
一方,コントラストと飽和をさらに改善するために,rgb,lab,lch色空間を組み合わせた新しい損失関数が人間の視覚原理に従って設計されている。
利用可能なデータセットに関する広範な実験は、2dB以上の優位性を持つ報告されたテクニックの最先端性能を検証する。
関連論文リスト
- A Hybrid Transformer-Mamba Network for Single Image Deraining [70.64069487982916]
既存のデラリング変換器では、固定レンジウィンドウやチャネル次元に沿って自己アテンション機構を採用している。
本稿では,多分岐型トランスフォーマー・マンバネットワーク(Transformer-Mamba Network,TransMamba Network,Transformer-Mamba Network)を提案する。
論文 参考訳(メタデータ) (2024-08-31T10:03:19Z) - Image-Conditional Diffusion Transformer for Underwater Image Enhancement [4.555168682310286]
画像条件拡散変換器(ICDT)を用いた新しいUIE法を提案する。
本手法は, 劣化した水中画像を条件入力とし, ICDTを適用した潜時空間に変換する。
我々の最大のモデルであるICDT-XL/2は、画像強調の最先端(SOTA)品質を達成するため、全ての比較手法より優れています。
論文 参考訳(メタデータ) (2024-07-07T14:34:31Z) - FDCE-Net: Underwater Image Enhancement with Embedding Frequency and Dual Color Encoder [49.79611204954311]
水中画像は、低明度、色の変化、ぼやけた詳細、吸光光によるノイズ、水や懸濁粒子による散乱などの様々な問題に悩まされることが多い。
従来の水中画像強調法(UIE)は主に空間領域の強調に焦点を当てており、画像固有の周波数領域情報を無視している。
論文 参考訳(メタデータ) (2024-04-27T15:16:34Z) - DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
水中画像強調(UIE)は、水中環境によって引き起こされる複雑な劣化のために難しい課題である。
従来の手法では、劣化過程を理想化し、中音や物体の動きが画像の特徴の分布に与える影響を無視することが多い。
提案手法では,予測画像を用いて疑似ラベルを動的に更新し,動的勾配を加えてネットワークの勾配空間を最適化する。
論文 参考訳(メタデータ) (2023-12-12T06:07:21Z) - UWFormer: Underwater Image Enhancement via a Semi-Supervised Multi-Scale Transformer [26.15238399758745]
水中画像は、品質が悪く、色調が歪んだり、コントラストが低かったりすることが多い。
現在のディープラーニング手法は、マルチスケール拡張に欠けるニューラル畳み込みネットワーク(CNN)に依存している。
半教師付き学習によって複数の周波数の画像を拡張するためのマルチスケールトランスフォーマーベースネットワークを提案する。
論文 参考訳(メタデータ) (2023-10-31T06:19:09Z) - Transmission and Color-guided Network for Underwater Image Enhancement [8.894719412298397]
水中画像強調のための適応透過・動的カラー誘導ネットワーク(ATDCnet)を提案する。
物理の知識を生かして,適応型トランスミッション指向モジュール(ATM)を設計し,ネットワークをより良く誘導する。
色偏差問題に対処するため,強調画像色を後処理する動的色誘導モジュール (DCM) を設計した。
論文 参考訳(メタデータ) (2023-08-09T11:43:54Z) - Dual Aggregation Transformer for Image Super-Resolution [92.41781921611646]
画像SRのための新しいトランスモデルDual Aggregation Transformerを提案する。
DATは、ブロック間およびブロック内二重方式で、空間次元とチャネル次元にまたがる特徴を集約する。
我々のDATは現在の手法を超越している。
論文 参考訳(メタデータ) (2023-08-07T07:39:39Z) - PUGAN: Physical Model-Guided Underwater Image Enhancement Using GAN with
Dual-Discriminators [120.06891448820447]
鮮明で視覚的に快適な画像を得る方法は、人々の共通の関心事となっている。
水中画像強調(UIE)の課題も、時間とともに現れた。
本稿では,UIE のための物理モデル誘導型 GAN モデルを提案する。
我々のPUGANは質的および定量的な測定値において最先端の手法より優れています。
論文 参考訳(メタデータ) (2023-06-15T07:41:12Z) - A Wavelet-based Dual-stream Network for Underwater Image Enhancement [11.178274779143209]
水中画像のカラーキャストやぼやけた細部に対処するウェーブレットベースのデュアルストリームネットワークを提案する。
離散ウェーブレット変換を用いて、入力画像を複数の周波数帯域に分解することで、これらのアーティファクトを別々に処理する。
提案手法を実環境および合成水中データセットの両方で検証し,計算複雑性の低い色補正およびぼかし除去におけるモデルの有効性を示した。
論文 参考訳(メタデータ) (2022-02-17T16:57:25Z) - Wavelength-based Attributed Deep Neural Network for Underwater Image
Restoration [9.378355457555319]
本稿では,色チャネルの移動範囲に基づいて,適切な受容場サイズ(コンテキスト)を付与することで,大幅な性能向上が期待できることを示す。
第2の新規性として、学習したマルチコンテキスト特徴を適応的に洗練するための注意的スキップ機構を組み込んだ。
提案するフレームワークはDeep WaveNetと呼ばれ、従来のピクセル単位で機能ベースのコスト関数を使って最適化されている。
論文 参考訳(メタデータ) (2021-06-15T06:47:51Z) - Underwater Image Enhancement via Medium Transmission-Guided Multi-Color
Space Embedding [88.46682991985907]
本稿では,Ucolor と呼ばれる媒体透過誘導多色空間埋め込みによる水中画像強調ネットワークを提案する。
当社のネットワークは、複数の色空間を埋め込むことにより、水中画像の視覚的品質を効果的に改善できます。
論文 参考訳(メタデータ) (2021-04-27T07:35:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。