Real-time smart vehicle surveillance system
- URL: http://arxiv.org/abs/2111.12289v1
- Date: Wed, 24 Nov 2021 06:15:14 GMT
- Title: Real-time smart vehicle surveillance system
- Authors: Shantha Kumar S, Vykunth P, Jayanthi D
- Abstract summary: Vehicle theft is one of the least solved offenses in India.
We propose a real-time vehicle surveillance system, which detects and tracks the suspect vehicle using the CCTV video feed.
Various image processing and deep learning algorithms are employed to meet the objectives of the proposed system.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Over the last decade, there has been a spike in criminal activity all around
the globe. According to the Indian police department, vehicle theft is one of
the least solved offenses, and almost 19% of all recorded cases are related to
motor vehicle theft. To overcome these adversaries, we propose a real-time
vehicle surveillance system, which detects and tracks the suspect vehicle using
the CCTV video feed. The proposed system extracts various attributes of the
vehicle such as Make, Model, Color, License plate number, and type of the
license plate. Various image processing and deep learning algorithms are
employed to meet the objectives of the proposed system. The extracted features
can be used as evidence to report violations of law. Although the system uses
more parameters, it is still able to make real time predictions with minimal
latency and accuracy loss.
Related papers
- Next-gen traffic surveillance: AI-assisted mobile traffic violation
detection system [0.0]
Approximately 1,3 million people lose their lives daily due to traffic accidents.
The integration of Artificial Intelligence algorithms, leveraging machine learning and computer vision, has facilitated the development of precise traffic rule enforcement.
This paper illustrates how computer vision and machine learning enable the creation of robust algorithms for detecting various traffic violations.
arXiv Detail & Related papers (2023-11-24T22:42:47Z) - MSight: An Edge-Cloud Infrastructure-based Perception System for
Connected Automated Vehicles [58.461077944514564]
This paper presents MSight, a cutting-edge roadside perception system specifically designed for automated vehicles.
MSight offers real-time vehicle detection, localization, tracking, and short-term trajectory prediction.
Evaluations underscore the system's capability to uphold lane-level accuracy with minimal latency.
arXiv Detail & Related papers (2023-10-08T21:32:30Z) - Drone navigation and license place detection for vehicle location in
indoor spaces [55.66423065924684]
This work is aimed at creating a solution based on a nano-drone that navigates across rows of parked vehicles and detects their license plates.
All computations are done in real-time on the drone, which just sends position and detected images that allow the creation of a 2D map.
arXiv Detail & Related papers (2023-07-19T17:46:55Z) - A Real-Time Wrong-Way Vehicle Detection Based on YOLO and Centroid
Tracking [0.0]
Wrong-way driving is one of the main causes of road accidents and traffic jam all over the world.
In this paper, we propose an automatic wrong-way vehicle detection system from on-road surveillance camera footage.
arXiv Detail & Related papers (2022-10-19T00:53:28Z) - Scalable and Real-time Multi-Camera Vehicle Detection,
Re-Identification, and Tracking [58.95210121654722]
We propose a real-time city-scale multi-camera vehicle tracking system that handles real-world, low-resolution CCTV instead of idealized and curated video streams.
Our method is ranked among the top five performers on the public leaderboard.
arXiv Detail & Related papers (2022-04-15T12:47:01Z) - CODA: A Real-World Road Corner Case Dataset for Object Detection in
Autonomous Driving [117.87070488537334]
We introduce a challenging dataset named CODA that exposes this critical problem of vision-based detectors.
The performance of standard object detectors trained on large-scale autonomous driving datasets significantly drops to no more than 12.8% in mAR.
We experiment with the state-of-the-art open-world object detector and find that it also fails to reliably identify the novel objects in CODA.
arXiv Detail & Related papers (2022-03-15T08:32:56Z) - An Automated Approach for the Recognition of Bengali License Plates [0.0]
This study proposes a hybrid method for detecting license plates using characters from them.
Our captured image information was used for the recognition procedure in Bangladeshi vehicles.
arXiv Detail & Related papers (2021-09-01T17:31:33Z) - Exploiting Playbacks in Unsupervised Domain Adaptation for 3D Object
Detection [55.12894776039135]
State-of-the-art 3D object detectors, based on deep learning, have shown promising accuracy but are prone to over-fit to domain idiosyncrasies.
We propose a novel learning approach that drastically reduces this gap by fine-tuning the detector on pseudo-labels in the target domain.
We show, on five autonomous driving datasets, that fine-tuning the detector on these pseudo-labels substantially reduces the domain gap to new driving environments.
arXiv Detail & Related papers (2021-03-26T01:18:11Z) - Computer Vision based Accident Detection for Autonomous Vehicles [0.0]
We propose a novel support system for self-driving cars that detects vehicular accidents through a dashboard camera.
The framework has been tested on a custom dataset of dashcam footage and achieves a high accident detection rate while maintaining a low false alarm rate.
arXiv Detail & Related papers (2020-12-20T08:51:10Z) - Deep Learning Based Traffic Surveillance System For Missing and
Suspicious Car Detection [0.0]
This paper presents a deep learning based automatic traffic surveillance system for the detection of stolen/suspicious cars.
It mainly comprises of four parts: Select-Detector, Image Quality Enhancer, Image Transformer, and Smart Recognizer.
The effectiveness of the proposed approach is tested on the government's CCTV camera footage, which resulted in identifying the stolen/suspicious cars with an accuracy of 87%.
arXiv Detail & Related papers (2020-07-17T07:18:12Z) - Physically Realizable Adversarial Examples for LiDAR Object Detection [72.0017682322147]
We present a method to generate universal 3D adversarial objects to fool LiDAR detectors.
In particular, we demonstrate that placing an adversarial object on the rooftop of any target vehicle to hide the vehicle entirely from LiDAR detectors with a success rate of 80%.
This is one step closer towards safer self-driving under unseen conditions from limited training data.
arXiv Detail & Related papers (2020-04-01T16:11:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.