Next-gen traffic surveillance: AI-assisted mobile traffic violation
detection system
- URL: http://arxiv.org/abs/2311.16179v1
- Date: Fri, 24 Nov 2023 22:42:47 GMT
- Title: Next-gen traffic surveillance: AI-assisted mobile traffic violation
detection system
- Authors: Dila Dede, Mehmet Ali Sars{\i}l, Ata Shaker, Olgu Alt{\i}nta\c{s},
Onur Ergen
- Abstract summary: Approximately 1,3 million people lose their lives daily due to traffic accidents.
The integration of Artificial Intelligence algorithms, leveraging machine learning and computer vision, has facilitated the development of precise traffic rule enforcement.
This paper illustrates how computer vision and machine learning enable the creation of robust algorithms for detecting various traffic violations.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Road traffic accidents pose a significant global public health concern,
leading to injuries, fatalities, and vehicle damage. Approximately 1,3 million
people lose their lives daily due to traffic accidents [World Health
Organization, 2022]. Addressing this issue requires accurate traffic law
violation detection systems to ensure adherence to regulations. The integration
of Artificial Intelligence algorithms, leveraging machine learning and computer
vision, has facilitated the development of precise traffic rule enforcement.
This paper illustrates how computer vision and machine learning enable the
creation of robust algorithms for detecting various traffic violations. Our
model, capable of identifying six common traffic infractions, detects red light
violations, illegal use of breakdown lanes, violations of vehicle following
distance, breaches of marked crosswalk laws, illegal parking, and parking on
marked crosswalks. Utilizing online traffic footage and a self-mounted on-dash
camera, we apply the YOLOv5 algorithm's detection module to identify traffic
agents such as cars, pedestrians, and traffic signs, and the strongSORT
algorithm for continuous interframe tracking. Six discrete algorithms analyze
agents' behavior and trajectory to detect violations. Subsequently, an
Identification Module extracts vehicle ID information, such as the license
plate, to generate violation notices sent to relevant authorities.
Related papers
- Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - Detecting Socially Abnormal Highway Driving Behaviors via Recurrent
Graph Attention Networks [4.526932450666445]
This work focuses on detecting abnormal driving behaviors from trajectories produced by highway video surveillance systems.
We propose an autoencoder with a Recurrent Graph Attention Network that can capture the highway driving behaviors contextualized on the surrounding cars.
Our model is scalable to large freeways with thousands of cars.
arXiv Detail & Related papers (2023-04-23T01:32:47Z) - Unsupervised Adaptation from Repeated Traversals for Autonomous Driving [54.59577283226982]
Self-driving cars must generalize to the end-user's environment to operate reliably.
One potential solution is to leverage unlabeled data collected from the end-users' environments.
There is no reliable signal in the target domain to supervise the adaptation process.
We show that this simple additional assumption is sufficient to obtain a potent signal that allows us to perform iterative self-training of 3D object detectors on the target domain.
arXiv Detail & Related papers (2023-03-27T15:07:55Z) - Infrastructure-based End-to-End Learning and Prevention of Driver
Failure [68.0478623315416]
FailureNet is a recurrent neural network trained end-to-end on trajectories of both nominal and reckless drivers in a scaled miniature city.
It can accurately identify control failures, upstream perception errors, and speeding drivers, distinguishing them from nominal driving.
Compared to speed or frequency-based predictors, FailureNet's recurrent neural network structure provides improved predictive power, yielding upwards of 84% accuracy when deployed on hardware.
arXiv Detail & Related papers (2023-03-21T22:55:51Z) - Real-Time Accident Detection in Traffic Surveillance Using Deep Learning [0.8808993671472349]
This paper presents a new efficient framework for accident detection at intersections for traffic surveillance applications.
The proposed framework consists of three hierarchical steps, including efficient and accurate object detection based on the state-of-the-art YOLOv4 method.
The robustness of the proposed framework is evaluated using video sequences collected from YouTube with diverse illumination conditions.
arXiv Detail & Related papers (2022-08-12T19:07:20Z) - Efficient Federated Learning with Spike Neural Networks for Traffic Sign
Recognition [70.306089187104]
We introduce powerful Spike Neural Networks (SNNs) into traffic sign recognition for energy-efficient and fast model training.
Numerical results indicate that the proposed federated SNN outperforms traditional federated convolutional neural networks in terms of accuracy, noise immunity, and energy efficiency as well.
arXiv Detail & Related papers (2022-05-28T03:11:48Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
Navigating through intersections is one of the main challenging tasks for an autonomous vehicle.
In this work, we focus on the implementation of a system able to navigate through intersections where only traffic signs are provided.
We propose a multi-agent system using a continuous, model-free Deep Reinforcement Learning algorithm used to train a neural network for predicting both the acceleration and the steering angle at each time step.
arXiv Detail & Related papers (2021-04-28T07:54:40Z) - Exploiting Playbacks in Unsupervised Domain Adaptation for 3D Object
Detection [55.12894776039135]
State-of-the-art 3D object detectors, based on deep learning, have shown promising accuracy but are prone to over-fit to domain idiosyncrasies.
We propose a novel learning approach that drastically reduces this gap by fine-tuning the detector on pseudo-labels in the target domain.
We show, on five autonomous driving datasets, that fine-tuning the detector on these pseudo-labels substantially reduces the domain gap to new driving environments.
arXiv Detail & Related papers (2021-03-26T01:18:11Z) - Computer Vision based Accident Detection for Autonomous Vehicles [0.0]
We propose a novel support system for self-driving cars that detects vehicular accidents through a dashboard camera.
The framework has been tested on a custom dataset of dashcam footage and achieves a high accident detection rate while maintaining a low false alarm rate.
arXiv Detail & Related papers (2020-12-20T08:51:10Z) - Artificial Intelligence Enabled Traffic Monitoring System [3.085453921856008]
This article presents a novel approach to automatically monitor real time traffic footage using deep convolutional neural networks.
The proposed system deploys several state-of-the-art deep learning algorithms to automate different traffic monitoring needs.
arXiv Detail & Related papers (2020-10-02T22:28:02Z) - iTV: Inferring Traffic Violation-Prone Locations with Vehicle
Trajectories and Road Environment Data [12.715237421592624]
We propose a framework to infer traffic violation-prone locations in cities based on the largetemporal-scale vehicle trajectory data and environment data.
To evaluate the effectiveness of the proposed method, we conduct extensive studies on large-scale, real-world vehicle trajectories collected from two Chinese cities.
arXiv Detail & Related papers (2020-05-09T08:52:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.