Causal Regularization Using Domain Priors
- URL: http://arxiv.org/abs/2111.12490v1
- Date: Wed, 24 Nov 2021 13:38:24 GMT
- Title: Causal Regularization Using Domain Priors
- Authors: Abbavaram Gowtham Reddy, Sai Srinivas Kancheti, Vineeth N
Balasubramanian, Amit Sharma
- Abstract summary: We propose a causal regularization method that can incorporate causal domain priors into the network.
We show that this approach can generalize to various kinds of specifications of causal priors.
On most datasets, domain-prior consistent models can be obtained without compromising on accuracy.
- Score: 23.31291916031858
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural networks leverage both causal and correlation-based relationships in
data to learn models that optimize a given performance criterion, such as
classification accuracy. This results in learned models that may not
necessarily reflect the true causal relationships between input and output.
When domain priors of causal relationships are available at the time of
training, it is essential that a neural network model maintains these
relationships as causal, even as it learns to optimize the performance
criterion. We propose a causal regularization method that can incorporate such
causal domain priors into the network and which supports both direct and total
causal effects. We show that this approach can generalize to various kinds of
specifications of causal priors, including monotonicity of causal effect of a
given input feature or removing a certain influence for purposes of fairness.
Our experiments on eleven benchmark datasets show the usefulness of this
approach in regularizing a learned neural network model to maintain desired
causal effects. On most datasets, domain-prior consistent models can be
obtained without compromising on accuracy.
Related papers
- Estimating Causal Effects from Learned Causal Networks [56.14597641617531]
We propose an alternative paradigm for answering causal-effect queries over discrete observable variables.
We learn the causal Bayesian network and its confounding latent variables directly from the observational data.
We show that this emphmodel completion learning approach can be more effective than estimand approaches.
arXiv Detail & Related papers (2024-08-26T08:39:09Z) - A PAC-Bayesian Perspective on the Interpolating Information Criterion [54.548058449535155]
We show how a PAC-Bayes bound is obtained for a general class of models, characterizing factors which influence performance in the interpolating regime.
We quantify how the test error for overparameterized models achieving effectively zero training error depends on the quality of the implicit regularization imposed by e.g. the combination of model, parameter-initialization scheme.
arXiv Detail & Related papers (2023-11-13T01:48:08Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
We propose a framework for efficient and effective counterfactual inference implemented with neural networks.
The proposed approach enhances the capacity to generalize estimated counterfactual outcomes to unseen data.
Empirical results conducted on multiple datasets offer compelling support for our theoretical assertions.
arXiv Detail & Related papers (2023-06-09T08:30:51Z) - Causal Analysis for Robust Interpretability of Neural Networks [0.2519906683279152]
We develop a robust interventional-based method to capture cause-effect mechanisms in pre-trained neural networks.
We apply our method to vision models trained on classification tasks.
arXiv Detail & Related papers (2023-05-15T18:37:24Z) - Towards Causal Analysis of Empirical Software Engineering Data: The
Impact of Programming Languages on Coding Competitions [10.51554436183424]
This paper discusses some novel techniques based on structural causal models.
We apply these ideas to analyzing public data about programmer performance in Code Jam.
We find considerable differences between a purely associational and a causal analysis of the very same data.
arXiv Detail & Related papers (2023-01-18T13:46:16Z) - De-Biasing Generative Models using Counterfactual Methods [0.0]
We propose a new decoder based framework named the Causal Counterfactual Generative Model (CCGM)
Our proposed method combines a causal latent space VAE model with specific modification to emphasize causal fidelity.
We explore how better disentanglement of causal learning and encoding/decoding generates higher causal intervention quality.
arXiv Detail & Related papers (2022-07-04T16:53:20Z) - How Tempering Fixes Data Augmentation in Bayesian Neural Networks [22.188535244056016]
We show that tempering implicitly reduces the misspecification arising from modeling augmentations as i.i.d. data.
The temperature mimics the role of the effective sample size, reflecting the gain in information provided by the augmentations.
arXiv Detail & Related papers (2022-05-27T11:06:56Z) - Generalizing Graph Neural Networks on Out-Of-Distribution Graphs [51.33152272781324]
Graph Neural Networks (GNNs) are proposed without considering the distribution shifts between training and testing graphs.
In such a setting, GNNs tend to exploit subtle statistical correlations existing in the training set for predictions, even though it is a spurious correlation.
We propose a general causal representation framework, called StableGNN, to eliminate the impact of spurious correlations.
arXiv Detail & Related papers (2021-11-20T18:57:18Z) - Domain Adaptative Causality Encoder [52.779274858332656]
We leverage the characteristics of dependency trees and adversarial learning to address the tasks of adaptive causality identification and localisation.
We present a new causality dataset, namely MedCaus, which integrates all types of causality in the text.
arXiv Detail & Related papers (2020-11-27T04:14:55Z) - Estimating Causal Effects with the Neural Autoregressive Density
Estimator [6.59529078336196]
We use neural autoregressive density estimators to estimate causal effects within the Pearl's do-calculus framework.
We show that the approach can retrieve causal effects from non-linear systems without explicitly modeling the interactions between the variables.
arXiv Detail & Related papers (2020-08-17T13:12:38Z) - Structural Causal Models Are (Solvable by) Credal Networks [70.45873402967297]
Causal inferences can be obtained by standard algorithms for the updating of credal nets.
This contribution should be regarded as a systematic approach to represent structural causal models by credal networks.
Experiments show that approximate algorithms for credal networks can immediately be used to do causal inference in real-size problems.
arXiv Detail & Related papers (2020-08-02T11:19:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.