Medium Access Control protocol for Collaborative Spectrum Learning in
Wireless Networks
- URL: http://arxiv.org/abs/2111.12581v2
- Date: Tue, 6 Feb 2024 21:53:00 GMT
- Title: Medium Access Control protocol for Collaborative Spectrum Learning in
Wireless Networks
- Authors: Tomer Boyarski, Wenbo Wang, Amir Leshem
- Abstract summary: We present a fully-distributed algorithm for spectrum collaboration in congested ad-hoc networks.
Based on the algorithm we provide a medium access control protocol which allows distributed implementation of the algorithm in ad-hoc networks.
- Score: 15.527404283712835
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years there is a growing effort to provide learning algorithms for
spectrum collaboration. In this paper we present a medium access control
protocol which allows spectrum collaboration with minimal regret and high
spectral efficiency in highly loaded networks. We present a fully-distributed
algorithm for spectrum collaboration in congested ad-hoc networks. The
algorithm jointly solves both the channel allocation and access scheduling
problems. We prove that the algorithm has an optimal logarithmic regret. Based
on the algorithm we provide a medium access control protocol which allows
distributed implementation of the algorithm in ad-hoc networks. The protocol
utilizes single-channel opportunistic carrier sensing to carry out a
low-complexity distributed auction in time and frequency. We also discuss
practical implementation issues such as bounded frame size and speed of
convergence. Computer simulations comparing the algorithm to state-of-the-art
distributed medium access control protocols show the significant advantage of
the proposed scheme.
Related papers
- Performance-Aware Self-Configurable Multi-Agent Networks: A Distributed Submodular Approach for Simultaneous Coordination and Network Design [3.5527561584422465]
We present AlterNAting COordination and Network-Design Algorithm (Anaconda)
Anaconda is a scalable algorithm that also enjoys near-optimality guarantees.
We demonstrate in simulated scenarios of area monitoring and compare it with a state-of-the-art algorithm.
arXiv Detail & Related papers (2024-09-02T18:11:33Z) - Machine learning-based decentralized TDMA for VLC IoT networks [0.9208007322096532]
The proposed algorithm is based on Q-learning, a reinforcement learning algorithm.
The proposed algorithm converges quickly and provides collision-free decentralized TDMA for the network.
arXiv Detail & Related papers (2023-11-23T16:12:00Z) - MARLIN: Soft Actor-Critic based Reinforcement Learning for Congestion
Control in Real Networks [63.24965775030673]
We propose a novel Reinforcement Learning (RL) approach to design generic Congestion Control (CC) algorithms.
Our solution, MARLIN, uses the Soft Actor-Critic algorithm to maximize both entropy and return.
We trained MARLIN on a real network with varying background traffic patterns to overcome the sim-to-real mismatch.
arXiv Detail & Related papers (2023-02-02T18:27:20Z) - IoV Scenario: Implementation of a Bandwidth Aware Algorithm in Wireless
Network Communication Mode [49.734868032441625]
This paper proposes a bandwidth aware multi domain virtual network embedding algorithm (BA-VNE)
The algorithm is mainly aimed at the problem that users need a lot of bandwidth in wireless communication mode.
In order to improve the performance of the algorithm, we introduce particle swarm optimization (PSO) algorithm.
arXiv Detail & Related papers (2022-02-03T03:34:06Z) - Cooperative Multi-Agent Reinforcement Learning Based Distributed Dynamic
Spectrum Access in Cognitive Radio Networks [46.723006378363785]
Dynamic spectrum access (DSA) is a promising paradigm to remedy the problem of inefficient spectrum utilization.
In this paper, we investigate the distributed DSA problem for multi-user in a typical cognitive radio network.
We employ the deep recurrent Q-network (DRQN) to address the partial observability of the state for each cognitive user.
arXiv Detail & Related papers (2021-06-17T06:52:21Z) - Over-the-Air Decentralized Federated Learning [28.593149477080605]
We consider decentralized federated learning (FL) over wireless networks, where over-the-air computation (AirComp) is adopted to facilitate the local model consensus in a device-to-device (D2D) communication manner.
We propose an AirComp-based DSGD with gradient tracking and variance reduction (DSGT-VR) algorithm, where both precoding and decoding strategies are developed for D2D communication.
We prove that the proposed algorithm converges linearly and establish the optimality gap for strongly convex and smooth loss functions, taking into account the channel fading and noise.
arXiv Detail & Related papers (2021-06-15T09:42:33Z) - Lower Bounds and Optimal Algorithms for Smooth and Strongly Convex
Decentralized Optimization Over Time-Varying Networks [79.16773494166644]
We consider the task of minimizing the sum of smooth and strongly convex functions stored in a decentralized manner across the nodes of a communication network.
We design two optimal algorithms that attain these lower bounds.
We corroborate the theoretical efficiency of these algorithms by performing an experimental comparison with existing state-of-the-art methods.
arXiv Detail & Related papers (2021-06-08T15:54:44Z) - Fast Convergence Algorithm for Analog Federated Learning [30.399830943617772]
We propose an AirComp-based FedSplit algorithm for efficient analog federated learning over wireless channels.
We prove that the proposed algorithm linearly converges to the optimal solutions under the assumption that the objective function is strongly convex and smooth.
Our algorithm is theoretically and experimentally verified to be much more robust to the ill-conditioned problems with faster convergence compared with other benchmark FL algorithms.
arXiv Detail & Related papers (2020-10-30T10:59:49Z) - Multi-Agent Reinforcement Learning in NOMA-aided UAV Networks for
Cellular Offloading [59.32570888309133]
A novel framework is proposed for cellular offloading with the aid of multiple unmanned aerial vehicles (UAVs)
Non-orthogonal multiple access (NOMA) technique is employed at each UAV to further improve the spectrum efficiency of the wireless network.
A mutual deep Q-network (MDQN) algorithm is proposed to jointly determine the optimal 3D trajectory and power allocation of UAVs.
arXiv Detail & Related papers (2020-10-18T20:22:05Z) - Decentralized Learning for Channel Allocation in IoT Networks over
Unlicensed Bandwidth as a Contextual Multi-player Multi-armed Bandit Game [134.88020946767404]
We study a decentralized channel allocation problem in an ad-hoc Internet of Things network underlaying on the spectrum licensed to a primary cellular network.
Our study maps this problem into a contextual multi-player, multi-armed bandit game, and proposes a purely decentralized, three-stage policy learning algorithm through trial-and-error.
arXiv Detail & Related papers (2020-03-30T10:05:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.