論文の概要: Explaining machine-learned particle-flow reconstruction
- arxiv url: http://arxiv.org/abs/2111.12840v1
- Date: Wed, 24 Nov 2021 23:20:03 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-05 03:17:21.626757
- Title: Explaining machine-learned particle-flow reconstruction
- Title(参考訳): 機械学習型粒子フロー再構成の解説
- Authors: Farouk Mokhtar, Raghav Kansal, Daniel Diaz, Javier Duarte, Joosep
Pata, Maurizio Pierini, Jean-Roch Vlimant
- Abstract要約: 粒子流(PF)アルゴリズムは、衝突の包括的粒子レベルビューを再構築するために汎用粒子検出器で使用される。
機械学習粒子フロー(MLPF)アルゴリズムとして知られるグラフニューラルネットワーク(GNN)モデルが,規則に基づくPFアルゴリズムの代替として開発された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The particle-flow (PF) algorithm is used in general-purpose particle
detectors to reconstruct a comprehensive particle-level view of the collision
by combining information from different subdetectors. A graph neural network
(GNN) model, known as the machine-learned particle-flow (MLPF) algorithm, has
been developed to substitute the rule-based PF algorithm. However,
understanding the model's decision making is not straightforward, especially
given the complexity of the set-to-set prediction task, dynamic graph building,
and message-passing steps. In this paper, we adapt the layerwise-relevance
propagation technique for GNNs and apply it to the MLPF algorithm to gauge the
relevant nodes and features for its predictions. Through this process, we gain
insight into the model's decision-making.
- Abstract(参考訳): 粒子流(PF)アルゴリズムは汎用粒子検出器において、様々なサブ検出器の情報を組み合わせて衝突の包括的粒子レベルビューを再構築するために用いられる。
機械学習粒子フロー(MLPF)アルゴリズムとして知られるグラフニューラルネットワーク(GNN)モデルが,規則に基づくPFアルゴリズムの代替として開発された。
しかし、特にセットツーセットの予測タスク、動的グラフ構築、メッセージパッシングステップの複雑さを考えると、モデルの意思決定を理解するのは簡単ではない。
本稿では,GNNのレイヤワイド関連伝搬手法を適用し,それをMLPFアルゴリズムに適用し,関連するノードと特徴を推定する。
このプロセスを通じて、モデルの意思決定に関する洞察を得る。
関連論文リスト
- Enhancing Data-Assimilation in CFD using Graph Neural Networks [0.0]
本稿では,グラフニューラルネットワーク(GNN)モデルによる随伴最適化に基づく,流体力学に応用されたデータ同化のための新しい機械学習手法を提案する。
我々は,有限要素法(FEM)の解法に基づく直接数値シミュレーションを用いて,GNNモデルと解法の間の2次元のインターフェースにより,GNNの予測をFEM解析の処理後ステップに組み込むことができることを示す。
論文 参考訳(メタデータ) (2023-11-29T19:11:40Z) - Deep Unrolling for Nonconvex Robust Principal Component Analysis [75.32013242448151]
我々はロバスト成分分析のためのアルゴリズムを設計する(A)
行列を低主行列とスパース主行列の和に分解する。
論文 参考訳(メタデータ) (2023-07-12T03:48:26Z) - Generalizing Backpropagation for Gradient-Based Interpretability [103.2998254573497]
モデルの勾配は、半環を用いたより一般的な定式化の特別な場合であることを示す。
この観測により、バックプロパゲーションアルゴリズムを一般化し、他の解釈可能な統計を効率的に計算することができる。
論文 参考訳(メタデータ) (2023-07-06T15:19:53Z) - Progress towards an improved particle flow algorithm at CMS with machine
learning [8.3763093941108]
CERN LHCにおけるCMS実験において、粒子流(PF)はイベント再構成において中心的な重要性を持つ。
近年,PF再構成を行うグラフニューラルネットワークであるMLPFアルゴリズムをCMSで探索している。
我々は,生成/シミュレーションレベルの粒子情報を用いて最適化されたアルゴリズムF再構成の実装に向けたCMSの進歩について論じる。
これにより、物理量の観点から検出器の応答を潜在的に改善する道が開ける。
論文 参考訳(メタデータ) (2023-03-30T18:41:28Z) - Amortized Bayesian Inference of GISAXS Data with Normalizing Flows [0.10752246796855561]
本稿では,変分オートエンコーダと正規化フローを組み合わせたシミュレーションに基づくフレームワークを提案し,パラメータの後方分布を推定する。
提案手法は,ABCと一貫した結果を生み出しながら,推定コストを桁違いに削減することを示した。
論文 参考訳(メタデータ) (2022-10-04T12:09:57Z) - Transformer with Implicit Edges for Particle-based Physics Simulation [135.77656965678196]
Implicit Edges (TIE) を用いたトランスフォーマーは、素粒子相互作用のリッチなセマンティクスをエッジフリーでキャプチャする。
様々な複雑さと素材の多様な領域におけるモデルの評価を行った。
論文 参考訳(メタデータ) (2022-07-22T03:45:29Z) - MLPF: Efficient machine-learned particle-flow reconstruction using graph
neural networks [0.0]
汎用粒子検出器では、粒子フローアルゴリズムを用いて事象の粒子レベルビューを再構築することができる。
並列化可能,スケーラブル,グラフニューラルネットワークに基づく,エンドツーエンドのトレーニング可能,マシン学習型粒子フローアルゴリズムを提案する。
陽子-陽子衝突で生成したトップクォーク-反クォーク対のモンテカルロデータセット上で,アルゴリズムの物理および計算性能について報告する。
論文 参考訳(メタデータ) (2021-01-21T12:47:54Z) - Model Fusion with Kullback--Leibler Divergence [58.20269014662046]
異種データセットから学習した後続分布を融合する手法を提案する。
我々のアルゴリズムは、融合モデルと個々のデータセット後部の両方に対する平均場仮定に依存している。
論文 参考訳(メタデータ) (2020-07-13T03:27:45Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
スパイキングニューラルネットワーク(SNN)は、時間的スパイクパターンを用いて情報を表現し、伝達する。
本稿では,情報符号化,シナプス可塑性,意思決定におけるスパイクタイミングダイナミクスの寄与について検討し,将来のDeepSNNやニューロモルフィックハードウェアシステムの設計への新たな視点を提供する。
論文 参考訳(メタデータ) (2020-03-26T11:13:07Z) - A Lagrangian Approach to Information Propagation in Graph Neural
Networks [21.077268852378385]
本稿では,グラフニューラルネットワーク(GNN)モデルに対する状態計算と学習アルゴリズムの新たなアプローチを提案する。
状態収束手順は、制約満足度機構によって暗黙的に表現され、学習手順の各エポックに対して別々の反復フェーズを必要としない。
実際、計算構造はウェイト、ニューラルアウトプット(ノード状態)、ラグランジュ乗数からなる随伴空間におけるラグランジアンのサドル点の探索に基づいている。
論文 参考訳(メタデータ) (2020-02-18T16:13:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。