Learning Long-Term Reward Redistribution via Randomized Return
Decomposition
- URL: http://arxiv.org/abs/2111.13485v1
- Date: Fri, 26 Nov 2021 13:23:36 GMT
- Title: Learning Long-Term Reward Redistribution via Randomized Return
Decomposition
- Authors: Zhizhou Ren, Ruihan Guo, Yuan Zhou, Jian Peng
- Abstract summary: We consider the problem formulation of episodic reinforcement learning with trajectory feedback.
It refers to an extreme delay of reward signals, in which the agent can only obtain one reward signal at the end of each trajectory.
We propose a novel reward redistribution algorithm, randomized return decomposition (RRD), to learn a proxy reward function for episodic reinforcement learning.
- Score: 18.47810850195995
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many practical applications of reinforcement learning require agents to learn
from sparse and delayed rewards. It challenges the ability of agents to
attribute their actions to future outcomes. In this paper, we consider the
problem formulation of episodic reinforcement learning with trajectory
feedback. It refers to an extreme delay of reward signals, in which the agent
can only obtain one reward signal at the end of each trajectory. A popular
paradigm for this problem setting is learning with a designed auxiliary dense
reward function, namely proxy reward, instead of sparse environmental signals.
Based on this framework, this paper proposes a novel reward redistribution
algorithm, randomized return decomposition (RRD), to learn a proxy reward
function for episodic reinforcement learning. We establish a surrogate problem
by Monte-Carlo sampling that scales up least-squares-based reward
redistribution to long-horizon problems. We analyze our surrogate loss function
by connection with existing methods in the literature, which illustrates the
algorithmic properties of our approach. In experiments, we extensively evaluate
our proposed method on a variety of benchmark tasks with episodic rewards and
demonstrate substantial improvement over baseline algorithms.
Related papers
- R3HF: Reward Redistribution for Enhancing Reinforcement Learning from Human Feedback [25.27230140274847]
Reinforcement learning from human feedback (RLHF) provides a paradigm for aligning large language models (LLMs) with human preferences.
This paper proposes a novel reward redistribution method called R3HF, which facilitates a more fine-grained, token-level reward allocation.
arXiv Detail & Related papers (2024-11-13T02:45:21Z) - Beyond Simple Sum of Delayed Rewards: Non-Markovian Reward Modeling for Reinforcement Learning [44.770495418026734]
Reinforcement Learning (RL) empowers agents to acquire various skills by learning from reward signals.
Traditional methods assume the existence of underlying Markovian rewards and that the observed delayed reward is simply the sum of instance-level rewards.
We propose Composite Delayed Reward Transformer (CoDeTr), which incorporates a specialized in-sequence attention mechanism.
arXiv Detail & Related papers (2024-10-26T13:12:27Z) - Walking the Values in Bayesian Inverse Reinforcement Learning [66.68997022043075]
Key challenge in Bayesian IRL is bridging the computational gap between the hypothesis space of possible rewards and the likelihood.
We propose ValueWalk - a new Markov chain Monte Carlo method based on this insight.
arXiv Detail & Related papers (2024-07-15T17:59:52Z) - Reinforcement Learning from Bagged Reward [46.16904382582698]
In Reinforcement Learning (RL), it is commonly assumed that an immediate reward signal is generated for each action taken by the agent.
In many real-world scenarios, designing immediate reward signals is difficult.
We propose a novel reward redistribution method equipped with a bidirectional attention mechanism.
arXiv Detail & Related papers (2024-02-06T07:26:44Z) - Let's reward step by step: Step-Level reward model as the Navigators for
Reasoning [64.27898739929734]
Process-Supervised Reward Model (PRM) furnishes LLMs with step-by-step feedback during the training phase.
We propose a greedy search algorithm that employs the step-level feedback from PRM to optimize the reasoning pathways explored by LLMs.
To explore the versatility of our approach, we develop a novel method to automatically generate step-level reward dataset for coding tasks and observed similar improved performance in the code generation tasks.
arXiv Detail & Related papers (2023-10-16T05:21:50Z) - Reward Uncertainty for Exploration in Preference-based Reinforcement
Learning [88.34958680436552]
We present an exploration method specifically for preference-based reinforcement learning algorithms.
Our main idea is to design an intrinsic reward by measuring the novelty based on learned reward.
Our experiments show that exploration bonus from uncertainty in learned reward improves both feedback- and sample-efficiency of preference-based RL algorithms.
arXiv Detail & Related papers (2022-05-24T23:22:10Z) - Anti-Concentrated Confidence Bonuses for Scalable Exploration [57.91943847134011]
Intrinsic rewards play a central role in handling the exploration-exploitation trade-off.
We introduce emphanti-concentrated confidence bounds for efficiently approximating the elliptical bonus.
We develop a practical variant for deep reinforcement learning that is competitive with contemporary intrinsic rewards on Atari benchmarks.
arXiv Detail & Related papers (2021-10-21T15:25:15Z) - MURAL: Meta-Learning Uncertainty-Aware Rewards for Outcome-Driven
Reinforcement Learning [65.52675802289775]
We show that an uncertainty aware classifier can solve challenging reinforcement learning problems.
We propose a novel method for computing the normalized maximum likelihood (NML) distribution.
We show that the resulting algorithm has a number of intriguing connections to both count-based exploration methods and prior algorithms for learning reward functions.
arXiv Detail & Related papers (2021-07-15T08:19:57Z) - Curious Exploration and Return-based Memory Restoration for Deep
Reinforcement Learning [2.3226893628361682]
In this paper, we focus on training a single agent to score goals with binary success/failure reward function.
The proposed method can be utilized to train agents in environments with fairly complex state and action spaces.
arXiv Detail & Related papers (2021-05-02T16:01:34Z) - Learning Guidance Rewards with Trajectory-space Smoothing [22.456737935789103]
Long-term temporal credit assignment is an important challenge in deep reinforcement learning.
Existing policy-gradient and Q-learning algorithms rely on dense environmental rewards that provide rich short-term supervision.
Recent works have proposed algorithms to learn dense "guidance" rewards that could be used in place of the sparse or delayed environmental rewards.
arXiv Detail & Related papers (2020-10-23T23:55:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.