論文の概要: Document Layout Analysis with Aesthetic-Guided Image Augmentation
- arxiv url: http://arxiv.org/abs/2111.13809v1
- Date: Sat, 27 Nov 2021 04:04:58 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-30 17:13:18.335979
- Title: Document Layout Analysis with Aesthetic-Guided Image Augmentation
- Title(参考訳): Aesthetic-Guided Image Augmentation を用いた文書レイアウト解析
- Authors: Tianlong Ma, Xingjiao Wu, Xin Li, Xiangcheng Du, Zhao Zhou, Liang Xue,
Cheng Jin
- Abstract要約: 本稿では,文書レイアウト解析の課題を解決するために,画像層モデリング手法を提案する。
文書のきめ細かい特徴を効果的に抽出するために,L-E3Netというエッジ埋め込みネットワークを提案する。
実験結果から,提案手法が非マンハッタンレイアウトの細粒度分割文書をよりうまく扱えることを示す。
- 参考スコア(独自算出の注目度): 9.077874211066671
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Document layout analysis (DLA) plays an important role in information
extraction and document understanding. At present, document layout analysis has
reached a milestone achievement, however, document layout analysis of
non-Manhattan is still a challenge. In this paper, we propose an image layer
modeling method to tackle this challenge. To measure the proposed image layer
modeling method, we propose a manually-labeled non-Manhattan layout
fine-grained segmentation dataset named FPD. As far as we know, FPD is the
first manually-labeled non-Manhattan layout fine-grained segmentation dataset.
To effectively extract fine-grained features of documents, we propose an edge
embedding network named L-E^3Net. Experimental results prove that our proposed
image layer modeling method can better deal with the fine-grained segmented
document of the non-Manhattan layout.
- Abstract(参考訳): 文書レイアウト解析(DLA)は情報抽出と文書理解において重要な役割を果たす。
現在、文書レイアウト分析はマイルストーンに達しているが、非manhattanの文書レイアウト分析は依然として課題である。
本稿では,この課題に対処するための画像層モデリング手法を提案する。
提案する画像層モデリング手法を,fpdという,手作業による非マンタンレイアウトの細粒度セグメンテーションデータセットを提案する。
私たちが知る限り、FPDは、手動でラベル付けされた非マンハッタンレイアウトのきめ細かいセグメンテーションデータセットである。
文書のきめ細かい特徴を効果的に抽出するために,L-E^3Netというエッジ埋め込みネットワークを提案する。
実験により,提案手法が非マンタンレイアウトのきめ細かなセグメンテーション文書にうまく対応できることが証明された。
関連論文リスト
- LayoutLLM: Large Language Model Instruction Tuning for Visually Rich Document Understanding [0.0]
本稿では,より柔軟な画像文書解析手法であるLayoutLLMを提案する。
画像,テキスト,レイアウト構造を事前学習することで,文書の理解を高める手法が開発されている。
本実験は,文書解析タスクにおけるベースラインモデルの改善を実証する。
論文 参考訳(メタデータ) (2024-03-21T09:25:24Z) - Enhancing Visually-Rich Document Understanding via Layout Structure
Modeling [91.07963806829237]
レイアウトの知識をモデルに注入する新しい文書理解モデルであるGraphLMを提案する。
我々は、FUNSD、XFUND、CORDなど様々なベンチマークでモデルを評価し、最先端の結果を得た。
論文 参考訳(メタデータ) (2023-08-15T13:53:52Z) - SelfDocSeg: A Self-Supervised vision-based Approach towards Document
Segmentation [15.953725529361874]
文書レイアウト分析は文書研究コミュニティにとって既知の問題である。
個人生活へのインターネット接続が拡大するにつれ、パブリックドメインでは膨大な量のドキュメントが利用できるようになった。
我々は,この課題に自己監督型文書セグメンテーションアプローチと異なり,自己監督型文書セグメンテーションアプローチを用いて対処する。
論文 参考訳(メタデータ) (2023-05-01T12:47:55Z) - DocMAE: Document Image Rectification via Self-supervised Representation
Learning [144.44748607192147]
文書画像修正のための新しい自己教師型フレームワークDocMAEを提案する。
まず、背景を除いた文書画像のランダムなパッチをマスクし、欠落したピクセルを再構成する。
このような自己教師型学習手法により、ネットワークは変形文書の本質的な構造を学習することが奨励される。
論文 参考訳(メタデータ) (2023-04-20T14:27:15Z) - Unifying Vision, Text, and Layout for Universal Document Processing [105.36490575974028]
本稿では,テキスト,画像,レイアウトのモダリティを文書理解と生成を含むさまざまなタスク形式とともに統合するドキュメントAIモデルを提案する。
我々の手法は、財務報告、学術論文、ウェブサイトなど、さまざまなデータ領域にまたがって、文書理解やQAといった9つのドキュメントAIタスクの最先端を定めている。
論文 参考訳(メタデータ) (2022-12-05T22:14:49Z) - Geometric Representation Learning for Document Image Rectification [137.75133384124976]
本稿では,明示的な幾何学的表現を導入して文書画像の修正を行うDocGeoNetを提案する。
私たちのモチベーションは、歪んだ文書画像の修正に3次元形状がグローバルなアンウォープ手段を提供するという洞察から生まれます。
実験は、我々のフレームワークの有効性を示し、我々のフレームワークが最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-10-15T01:57:40Z) - RDU: A Region-based Approach to Form-style Document Understanding [69.29541701576858]
キー情報抽出(KIE)は,フォーム形式の文書から構造化された情報を抽出することを目的としている。
我々は、Rerea-based Understanding Document (RDU) と呼ばれる新しいKIEモデルを開発する。
RDUは文書のテキスト内容と対応する座標を入力として、バウンディングボックスのような領域をローカライズして結果を予測しようとする。
論文 参考訳(メタデータ) (2022-06-14T14:47:48Z) - Cross-Domain Document Layout Analysis Using Document Style Guide [15.799572801059716]
文書レイアウト解析(DLA)は、文書画像を高レベルな意味領域に分解することを目的としている。
多くの研究者がこの課題に取り組み、大規模なトレーニングセットを構築するためにデータを合成した。
本稿では文書スタイルのガイダンスに基づく教師なしクロスドメインDLAフレームワークを提案する。
論文 参考訳(メタデータ) (2022-01-24T00:49:19Z) - RectiNet-v2: A stacked network architecture for document image dewarping [16.249023269158734]
本稿では,入力として使用する歪文書から歪みのない文書画像を生成することができるエンドツーエンドCNNアーキテクチャを提案する。
我々は、このモデルを、十分な自然データ不足を補うために、合成的にシミュレートされた歪んだ文書画像に基づいて訓練する。
我々は,この領域のベンチマークであるDocUNetデータセットを用いて本手法の評価を行い,最先端の手法に匹敵する結果を得た。
論文 参考訳(メタデータ) (2021-02-01T19:26:17Z) - Multiple Document Datasets Pre-training Improves Text Line Detection
With Deep Neural Networks [2.5352713493505785]
本稿では,文書レイアウト解析タスクのための完全畳み込みネットワークを提案する。
Doc-UFCNは、歴史的文書から物体を検出するためにゼロから訓練されたU字型モデルを用いています。
Doc-UFCNが様々なデータセットの最先端のメソッドより優れていることを示す。
論文 参考訳(メタデータ) (2020-12-28T09:48:33Z) - Cross-Domain Document Object Detection: Benchmark Suite and Method [71.4339949510586]
文書オブジェクト検出(DOD)は、インテリジェントな文書編集や理解といった下流タスクに不可欠である。
我々は、ソースドメインからのラベル付きデータとターゲットドメインからのラベルなしデータのみを用いて、ターゲットドメインの検出器を学習することを目的として、クロスドメインDODを調査した。
各データセットに対して、ページイメージ、バウンディングボックスアノテーション、PDFファイル、PDFファイルから抽出されたレンダリング層を提供する。
論文 参考訳(メタデータ) (2020-03-30T03:04:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。