Estimating Task Completion Times for Network Rollouts using Statistical
Models within Partitioning-based Regression Methods
- URL: http://arxiv.org/abs/2211.10866v1
- Date: Sun, 20 Nov 2022 04:28:12 GMT
- Title: Estimating Task Completion Times for Network Rollouts using Statistical
Models within Partitioning-based Regression Methods
- Authors: Venkatachalam Natchiappan, Shrihari Vasudevan and Thalanayar
Muthukumar
- Abstract summary: This paper proposes a data and Machine Learning-based forecasting solution for the Telecommunications network-rollout planning problem.
Using historical data of milestone completion times, a model needs to incorporate domain knowledge, handle noise and yet be interpretable to project managers.
This paper proposes partition-based regression models that incorporate data-driven statistical models within each partition, as a solution to the problem.
- Score: 0.01841601464419306
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper proposes a data and Machine Learning-based forecasting solution
for the Telecommunications network-rollout planning problem. Milestone
completion-time estimation is crucial to network-rollout planning; accurate
estimates enable better crew utilisation and optimised cost of materials and
logistics. Using historical data of milestone completion times, a model needs
to incorporate domain knowledge, handle noise and yet be interpretable to
project managers. This paper proposes partition-based regression models that
incorporate data-driven statistical models within each partition, as a solution
to the problem. Benchmarking experiments demonstrate that the proposed approach
obtains competitive to better performance, at a small fraction of the model
complexity of the best alternative approach based on Gradient Boosting.
Experiments also demonstrate that the proposed approach is effective for both
short and long-range forecasts. The proposed idea is applicable in any context
requiring time-series regression with noisy and attributed data.
Related papers
- Experiment Planning with Function Approximation [49.50254688629728]
We study the problem of experiment planning with function approximation in contextual bandit problems.
We propose two experiment planning strategies compatible with function approximation.
We show that a uniform sampler achieves competitive optimality rates in the setting where the number of actions is small.
arXiv Detail & Related papers (2024-01-10T14:40:23Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
Federated learning enables joint training of machine learning models from distributed clients without sharing their local data.
One key challenge in federated learning is to handle non-identically distributed data across the clients.
We propose a novel federated learning framework with projected trajectory regularization (FedPTR) for tackling the data issue.
arXiv Detail & Related papers (2023-12-22T02:12:08Z) - Building Resilience to Out-of-Distribution Visual Data via Input
Optimization and Model Finetuning [13.804184845195296]
We propose a preprocessing model that learns to optimise input data for a specific target vision model.
We investigate several out-of-distribution scenarios in the context of semantic segmentation for autonomous vehicles.
We demonstrate that our approach can enable performance on such data comparable to that of a finetuned model.
arXiv Detail & Related papers (2022-11-29T14:06:35Z) - Data-Driven Sample Average Approximation with Covariate Information [0.0]
We study optimization for data-driven decision-making when we have observations of the uncertain parameters within the optimization model together with concurrent observations of coparametrics.
We investigate three data-driven frameworks that integrate a machine learning prediction model within a programming sample average approximation (SAA) for approximating the solution to this problem.
arXiv Detail & Related papers (2022-07-27T14:45:04Z) - Stream-based active learning with linear models [0.7734726150561089]
In production, instead of performing random inspections to obtain product information, labels are collected by evaluating the information content of the unlabeled data.
We propose a new strategy for the stream-based scenario, where instances are sequentially offered to the learner.
The iterative aspect of the decision-making process is tackled by setting a threshold on the informativeness of the unlabeled data points.
arXiv Detail & Related papers (2022-07-20T13:15:23Z) - Deep Learning with Multiple Data Set: A Weighted Goal Programming
Approach [2.7393821783237184]
Large-scale data analysis is growing at an exponential rate as data proliferates in our societies.
Deep Learning models require plenty of resources, and distributed training is needed.
This paper presents a Multicriteria approach for distributed learning.
arXiv Detail & Related papers (2021-11-27T07:10:25Z) - On Effective Scheduling of Model-based Reinforcement Learning [53.027698625496015]
We propose a framework named AutoMBPO to automatically schedule the real data ratio.
In this paper, we first theoretically analyze the role of real data in policy training, which suggests that gradually increasing the ratio of real data yields better performance.
arXiv Detail & Related papers (2021-11-16T15:24:59Z) - Time-Series Imputation with Wasserstein Interpolation for Optimal
Look-Ahead-Bias and Variance Tradeoff [66.59869239999459]
In finance, imputation of missing returns may be applied prior to training a portfolio optimization model.
There is an inherent trade-off between the look-ahead-bias of using the full data set for imputation and the larger variance in the imputation from using only the training data.
We propose a Bayesian posterior consensus distribution which optimally controls the variance and look-ahead-bias trade-off in the imputation.
arXiv Detail & Related papers (2021-02-25T09:05:35Z) - Model-based Policy Optimization with Unsupervised Model Adaptation [37.09948645461043]
We investigate how to bridge the gap between real and simulated data due to inaccurate model estimation for better policy optimization.
We propose a novel model-based reinforcement learning framework AMPO, which introduces unsupervised model adaptation.
Our approach achieves state-of-the-art performance in terms of sample efficiency on a range of continuous control benchmark tasks.
arXiv Detail & Related papers (2020-10-19T14:19:42Z) - Nonparametric Estimation in the Dynamic Bradley-Terry Model [69.70604365861121]
We develop a novel estimator that relies on kernel smoothing to pre-process the pairwise comparisons over time.
We derive time-varying oracle bounds for both the estimation error and the excess risk in the model-agnostic setting.
arXiv Detail & Related papers (2020-02-28T21:52:49Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
A popular transductive inference technique for few-shot metric-based approaches, is to update the prototype of each class with the mean of the most confident query examples.
We propose to meta-learn the confidence for each query sample, to assign optimal weights to unlabeled queries.
We validate our few-shot learning model with meta-learned confidence on four benchmark datasets.
arXiv Detail & Related papers (2020-02-27T10:22:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.