DSC: Deep Scan Context Descriptor for Large-Scale Place Recognition
- URL: http://arxiv.org/abs/2111.13838v1
- Date: Sat, 27 Nov 2021 07:31:32 GMT
- Title: DSC: Deep Scan Context Descriptor for Large-Scale Place Recognition
- Authors: Jiafeng Cui, Tengfei Huang, Yingfeng Cai, Junqiao Zhao, Lu Xiong and
Zhuoping Yu
- Abstract summary: LiDAR-based place recognition is an essential and challenging task both in loop closure detection and global relocalization.
We propose Deep Scan Context (DSC), a general and discriminative global descriptor that captures the relationship among segments of a point cloud.
- Score: 4.878199122477076
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: LiDAR-based place recognition is an essential and challenging task both in
loop closure detection and global relocalization. We propose Deep Scan Context
(DSC), a general and discriminative global descriptor that captures the
relationship among segments of a point cloud. Unlike previous methods that
utilize either semantics or a sequence of adjacent point clouds for better
place recognition, we only use raw point clouds to get competitive results.
Concretely, we first segment the point cloud egocentrically to acquire
centroids and eigenvalues of the segments. Then, we introduce a graph neural
network to aggregate these features into an embedding representation. Extensive
experiments conducted on the KITTI dataset show that DSC is robust to scene
variants and outperforms existing methods.
Related papers
- Subspace Prototype Guidance for Mitigating Class Imbalance in Point Cloud Semantic Segmentation [23.250178208474928]
This paper introduces a novel method, namely subspace prototype guidance (textbfSPG) to guide the training of segmentation network.
The proposed method significantly improves the segmentation performance and surpasses the state-of-the-art method.
arXiv Detail & Related papers (2024-08-20T04:31:46Z) - Point Cloud Pre-training with Diffusion Models [62.12279263217138]
We propose a novel pre-training method called Point cloud Diffusion pre-training (PointDif)
PointDif achieves substantial improvement across various real-world datasets for diverse downstream tasks such as classification, segmentation and detection.
arXiv Detail & Related papers (2023-11-25T08:10:05Z) - PointDC:Unsupervised Semantic Segmentation of 3D Point Clouds via
Cross-modal Distillation and Super-Voxel Clustering [32.18716273358168]
We take the first attempt for fully unsupervised semantic segmentation of point clouds.
We propose a novel framework, PointDC, comprised of two steps that handle the aforementioned problems.
PointDC yields a significant improvement over the prior state-of-the-art unsupervised methods.
arXiv Detail & Related papers (2023-04-18T12:58:21Z) - Adaptive Edge-to-Edge Interaction Learning for Point Cloud Analysis [118.30840667784206]
Key issue for point cloud data processing is extracting useful information from local regions.
Previous works ignore the relation between edges in local regions, which encodes the local shape information.
This paper proposes a novel Adaptive Edge-to-Edge Interaction Learning module.
arXiv Detail & Related papers (2022-11-20T07:10:14Z) - CPSeg: Cluster-free Panoptic Segmentation of 3D LiDAR Point Clouds [2.891413712995641]
We propose a novel real-time end-to-end panoptic segmentation network for LiDAR point clouds, called CPSeg.
CPSeg comprises a shared encoder, a dual decoder, a task-aware attention module (TAM) and a cluster-free instance segmentation head.
arXiv Detail & Related papers (2021-11-02T16:44:06Z) - SSC: Semantic Scan Context for Large-Scale Place Recognition [13.228580954956342]
We explore the use of high-level features, namely semantics, to improve the representation ability of descriptors.
We propose a novel global descriptor, Semantic Scan Context, which explores semantic information to represent scenes more effectively.
Our approach outperforms the state-of-the-art methods with a large margin.
arXiv Detail & Related papers (2021-07-01T11:51:19Z) - Semantic Segmentation for Real Point Cloud Scenes via Bilateral
Augmentation and Adaptive Fusion [38.05362492645094]
Real point cloud scenes can intuitively capture complex surroundings in the real world, but due to 3D data's raw nature, it is very challenging for machine perception.
We concentrate on the essential visual task, semantic segmentation, for large-scale point cloud data collected in reality.
By comparing with state-of-the-art networks on three different benchmarks, we demonstrate the effectiveness of our network.
arXiv Detail & Related papers (2021-03-12T04:13:20Z) - SPU-Net: Self-Supervised Point Cloud Upsampling by Coarse-to-Fine
Reconstruction with Self-Projection Optimization [52.20602782690776]
It is expensive and tedious to obtain large scale paired sparse-canned point sets for training from real scanned sparse data.
We propose a self-supervised point cloud upsampling network, named SPU-Net, to capture the inherent upsampling patterns of points lying on the underlying object surface.
We conduct various experiments on both synthetic and real-scanned datasets, and the results demonstrate that we achieve comparable performance to the state-of-the-art supervised methods.
arXiv Detail & Related papers (2020-12-08T14:14:09Z) - SOE-Net: A Self-Attention and Orientation Encoding Network for Point
Cloud based Place Recognition [50.9889997200743]
We tackle the problem of place recognition from point cloud data with a self-attention and orientation encoding network (SOE-Net)
SOE-Net fully explores the relationship between points and incorporates long-range context into point-wise local descriptors.
Experiments on various benchmark datasets demonstrate superior performance of the proposed network over the current state-of-the-art approaches.
arXiv Detail & Related papers (2020-11-24T22:28:25Z) - Gradient-Induced Co-Saliency Detection [81.54194063218216]
Co-saliency detection (Co-SOD) aims to segment the common salient foreground in a group of relevant images.
In this paper, inspired by human behavior, we propose a gradient-induced co-saliency detection method.
arXiv Detail & Related papers (2020-04-28T08:40:55Z) - SceneEncoder: Scene-Aware Semantic Segmentation of Point Clouds with A
Learnable Scene Descriptor [51.298760338410624]
We propose a SceneEncoder module to impose a scene-aware guidance to enhance the effect of global information.
The module predicts a scene descriptor, which learns to represent the categories of objects existing in the scene.
We also design a region similarity loss to propagate distinguishing features to their own neighboring points with the same label.
arXiv Detail & Related papers (2020-01-24T16:53:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.