論文の概要: SPIN: Simplifying Polar Invariance for Neural networks Application to
vision-based irradiance forecasting
- arxiv url: http://arxiv.org/abs/2111.14507v1
- Date: Mon, 29 Nov 2021 12:58:57 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-30 17:40:31.577410
- Title: SPIN: Simplifying Polar Invariance for Neural networks Application to
vision-based irradiance forecasting
- Title(参考訳): SPIN: ニューラルネットワークにおける極性不変性の簡易化と視覚に基づく照度予測への応用
- Authors: Quentin Paletta, Anthony Hu, Guillaume Arbod, Philippe Blanc, Joan
Lasenby
- Abstract要約: 画像の極座標への展開は、畳み込みアーキテクチャを訓練するためのより明示的な表現を提供する。
この前処理ステップはシーン表現の標準化によって予測結果を大幅に改善することを示す。
この変換は回転の中心を取り巻く領域を拡大し、より正確な短期照射予測をもたらす。
- 参考スコア(独自算出の注目度): 2.624902795082451
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Translational invariance induced by pooling operations is an inherent
property of convolutional neural networks, which facilitates numerous computer
vision tasks such as classification. Yet to leverage rotational invariant
tasks, convolutional architectures require specific rotational invariant layers
or extensive data augmentation to learn from diverse rotated versions of a
given spatial configuration. Unwrapping the image into its polar coordinates
provides a more explicit representation to train a convolutional architecture
as the rotational invariance becomes translational, hence the visually distinct
but otherwise equivalent rotated versions of a given scene can be learnt from a
single image. We show with two common vision-based solar irradiance forecasting
challenges (i.e. using ground-taken sky images or satellite images), that this
preprocessing step significantly improves prediction results by standardising
the scene representation, while decreasing training time by a factor of 4
compared to augmenting data with rotations. In addition, this transformation
magnifies the area surrounding the centre of the rotation, leading to more
accurate short-term irradiance predictions.
- Abstract(参考訳): プール操作によって誘導される翻訳不変性は畳み込みニューラルネットワークの性質であり、分類などの多くのコンピュータビジョンタスクを促進する。
しかし、回転不変タスクを活用するために、畳み込みアーキテクチャは、与えられた空間構成の様々な回転バージョンから学ぶために、特定の回転不変層や広範なデータ拡張を必要とする。
画像の極座標への展開は、回転不変性が変換されるにつれて、畳み込みアーキテクチャを訓練するためのより明示的な表現を提供する。
衛星画像や地上撮影画像を用いた2つの日射量予測課題を用いて,この前処理により,映像表現の標準化による予測結果が大幅に向上することを示すとともに,回転によるデータ強化に比べて4倍のトレーニング時間を削減できることを示した。
さらに、この変換は回転の中心を取り巻く領域を拡大し、より正確な短期照射予測をもたらす。
関連論文リスト
- PreCM: The Padding-based Rotation Equivariant Convolution Mode for Semantic Segmentation [10.74841255987162]
本稿では,パッド型回転同変畳み込みモード(PreCM)を数値的に構築する。
PreCMは、マルチスケールの画像や畳み込みカーネルだけでなく、複数の畳み込みを置き換えるための代替コンポーネントとしても使用できる。
実験により、PreCMベースのネットワークは、元のネットワークやデータ拡張ベースのネットワークよりもセグメンテーション性能が良いことを示した。
論文 参考訳(メタデータ) (2024-11-03T16:26:55Z) - Deep Learning Based Speckle Filtering for Polarimetric SAR Images. Application to Sentinel-1 [51.404644401997736]
本稿では、畳み込みニューラルネットワークを用いて偏光SAR画像のスペックルを除去するための完全なフレームワークを提案する。
実験により,提案手法はスペックル低減と分解能保存の両方において例外的な結果をもたらすことが示された。
論文 参考訳(メタデータ) (2024-08-28T10:07:17Z) - Revisiting Data Augmentation for Rotational Invariance in Convolutional
Neural Networks [0.29127054707887967]
画像分類のためのCNNにおける回転不変性について検討する。
実験により、データ拡張だけで訓練されたネットワークは、通常の非回転の場合と同様に、回転した画像の分類がほぼ可能であることが示された。
論文 参考訳(メタデータ) (2023-10-12T15:53:24Z) - Sorted Convolutional Network for Achieving Continuous Rotational
Invariance [56.42518353373004]
テクスチャ画像のハンドメイドな特徴に着想を得たSorting Convolution (SC)を提案する。
SCは、追加の学習可能なパラメータやデータ拡張を必要とせずに連続的な回転不変性を達成する。
以上の結果から, SCは, 上記の課題において, 最高の性能を達成できることが示唆された。
論文 参考訳(メタデータ) (2023-05-23T18:37:07Z) - SO(2) and O(2) Equivariance in Image Recognition with
Bessel-Convolutional Neural Networks [63.24965775030674]
この研究はベッセル畳み込みニューラルネットワーク(B-CNN)の開発を示す
B-CNNは、ベッセル関数に基づく特定の分解を利用して、画像とフィルタの間のキー操作を変更する。
他の手法と比較して,B-CNNの性能を評価するために検討を行った。
論文 参考訳(メタデータ) (2023-04-18T18:06:35Z) - Estimating Extreme 3D Image Rotation with Transformer Cross-Attention [13.82735766201496]
画像ペアのアクティベーションマップ間の相互アテンションを計算するために,CNN特徴マップとTransformer-Encoderを利用するクロスアテンションベースのアプローチを提案する。
一般的に使用されている画像回転データセットやベンチマークに適用した場合、現代の最先端のスキームよりも優れた性能を示すことが実験的に示されている。
論文 参考訳(メタデータ) (2023-03-05T09:07:26Z) - Exploring Invariant Representation for Visible-Infrared Person
Re-Identification [77.06940947765406]
異なるスペクトルを横断する歩行者にアイデンティティを関連付けることを目的とした、クロススペクトルの人物再識別は、モダリティの相違の主な課題に直面している。
本稿では、ロバスト機能マイニングネットワーク(RFM)と呼ばれるエンドツーエンドのハイブリッド学習フレームワークにおいて、画像レベルと特徴レベルの両方の問題に対処する。
RegDBとSYSU-MM01という2つの標準的なクロススペクトル人物識別データセットの実験結果により,最先端の性能が示された。
論文 参考訳(メタデータ) (2023-02-02T05:24:50Z) - Moving Frame Net: SE(3)-Equivariant Network for Volumes [0.0]
移動フレームアプローチに基づく画像データのための回転・変換同変ニューラルネットワークを提案する。
入力段階において、移動フレームの計算を1つに減らし、そのアプローチを大幅に改善する。
我々の訓練されたモデルは、MedMNIST3Dの試験されたデータセットの大部分の医療ボリューム分類において、ベンチマークを上回ります。
論文 参考訳(メタデータ) (2022-11-07T10:25:38Z) - Unsupervised Discovery of Disentangled Manifolds in GANs [74.24771216154105]
解釈可能な生成プロセスは、様々な画像編集アプリケーションに有用である。
本稿では,任意の学習された生成逆数ネットワークが与えられた潜在空間における解釈可能な方向を検出する枠組みを提案する。
論文 参考訳(メタデータ) (2020-11-24T02:18:08Z) - Scale-, shift- and rotation-invariant diffractive optical networks [0.0]
D2NN(Diffractive Deep Neural Networks)は、一連のトレーニング可能な表面上の光-物質相互作用を利用して、所望の統計的推論タスクを計算する。
そこで本研究では,学習期間中に入力オブジェクトの変換,回転,スケーリングを導入する,拡散型ネットワークの新たなトレーニング戦略を示す。
このトレーニング戦略は、スケール、シフト、回転不変の解への微分光学ネットワーク設計の進化をうまく導く。
論文 参考訳(メタデータ) (2020-10-24T02:18:39Z) - Generalizing Convolutional Neural Networks for Equivariance to Lie
Groups on Arbitrary Continuous Data [52.78581260260455]
任意の特定のリー群からの変換に同値な畳み込み層を構築するための一般的な方法を提案する。
同じモデルアーキテクチャを画像、ボール・アンド・スティック分子データ、ハミルトン力学系に適用する。
論文 参考訳(メタデータ) (2020-02-25T17:40:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。