論文の概要: HSLiNets: Hyperspectral Image and LiDAR Data Fusion Using Efficient Dual Non-Linear Feature Learning Networks
- arxiv url: http://arxiv.org/abs/2412.00302v2
- Date: Tue, 03 Dec 2024 02:07:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:42:52.934213
- Title: HSLiNets: Hyperspectral Image and LiDAR Data Fusion Using Efficient Dual Non-Linear Feature Learning Networks
- Title(参考訳): HSLiNets:効率的なデュアル非線形特徴学習ネットワークを用いたハイパースペクトル画像とLiDARデータ融合
- Authors: Judy X Yang, Jing Wang, Chen Hong Sui, Zekun Long, Jun Zhou,
- Abstract要約: 新しい線形特徴空間におけるハイパースペクトルイメージング(HSI)とLiDARデータの統合は、HSIに固有の高次元性と冗長性に起因する課題に対する有望な解決策を提供する。
本研究では、双方向逆畳み込み畳み込みニューラルネットワーク(CNN)経路と特殊空間解析ブロックを併用した、二重線型融合空間フレームワークを提案する。
提案手法は,データ処理や分類精度を向上するだけでなく,トランスフォーマーなどの先進モデルに係わる計算負担を軽減する。
- 参考スコア(独自算出の注目度): 7.06787067270941
- License:
- Abstract: The integration of hyperspectral imaging (HSI) and LiDAR data within new linear feature spaces offers a promising solution to the challenges posed by the high-dimensionality and redundancy inherent in HSIs. This study introduces a dual linear fused space framework that capitalizes on bidirectional reversed convolutional neural network (CNN) pathways, coupled with a specialized spatial analysis block. This approach combines the computational efficiency of CNNs with the adaptability of attention mechanisms, facilitating the effective fusion of spectral and spatial information. The proposed method not only enhances data processing and classification accuracy, but also mitigates the computational burden typically associated with advanced models such as Transformers. Evaluations of the Houston 2013 dataset demonstrate that our approach surpasses existing state-of-the-art models. This advancement underscores the potential of the framework in resource-constrained environments and its significant contributions to the field of remote sensing.
- Abstract(参考訳): 新しい線形特徴空間におけるハイパースペクトルイメージング(HSI)とLiDARデータの統合は、HSIに固有の高次元性と冗長性に起因する課題に対する有望な解決策を提供する。
本研究では、双方向逆畳み込み畳み込みニューラルネットワーク(CNN)経路と特殊空間解析ブロックを併用した、二重線型融合空間フレームワークを提案する。
このアプローチは、CNNの計算効率と注意機構の適応性を組み合わせて、スペクトルと空間情報の効果的な融合を促進する。
提案手法は,データ処理や分類精度を向上するだけでなく,トランスフォーマーなどの先進モデルに係わる計算負担を軽減する。
Houston 2013データセットの評価は、我々のアプローチが既存の最先端モデルを上回ることを示している。
この進歩は、資源制約された環境におけるフレームワークの可能性と、リモートセンシング分野への重要な貢献を裏付けるものである。
関連論文リスト
- Reliable Explainability of Deep Learning Spatial-Spectral Classifiers for Improved Semantic Segmentation in Autonomous Driving [1.474723404975345]
ハイパースペクトル画像(HSI)とディープニューラルネットワーク(DNN)は、インテリジェントビジョンシステムの精度を高めることができる。
このような安全クリティカルシステムの研究を進めるためには、複雑なDNNの出力に対するスペクトル情報の正確な寄与を決定する必要がある。
入力特徴と予測の関係をよりよく把握するために、関連するDNN層からのアクティベーションと重みによるデータを活用する方法を提案する。
論文 参考訳(メタデータ) (2025-02-20T10:11:27Z) - Physics-Informed Latent Neural Operator for Real-time Predictions of Complex Physical Systems [0.0]
ディープオペレータネットワーク(DeepONet)は、偏微分方程式(PDE)によって支配される系の代理モデルとして大きな可能性を示している。
この研究は、制限を克服する物理インフォームされた潜在演算子学習フレームワークPI-Latent-NOを導入している。
論文 参考訳(メタデータ) (2025-01-14T20:38:30Z) - Hyperspectral Images Efficient Spatial and Spectral non-Linear Model with Bidirectional Feature Learning [7.06787067270941]
本稿では,分類精度を高めつつ,データ量を大幅に削減する新しいフレームワークを提案する。
本モデルでは,空間特徴解析のための特殊ブロックによって補完されるスペクトル特徴を効率よく抽出するために,双方向逆畳み込みニューラルネットワーク(CNN)を用いる。
論文 参考訳(メタデータ) (2024-11-29T23:32:26Z) - Optimal Transport-Based Displacement Interpolation with Data Augmentation for Reduced Order Modeling of Nonlinear Dynamical Systems [0.0]
本稿では,複雑なシステムにおける非線形力学の表現を強化するために,最適輸送理論と変位を利用した新しいリダクション・オーダー・モデル(ROM)を提案する。
複雑なシステム挙動の予測における精度と効率の向上を示し、計算物理学や工学における幅広い応用の可能性を示している。
論文 参考訳(メタデータ) (2024-11-13T16:29:33Z) - HSIMamba: Hyperpsectral Imaging Efficient Feature Learning with Bidirectional State Space for Classification [16.742768644585684]
HSIMambaは、双方向の逆畳み込みニューラルネットワークパスを使用して、スペクトル特徴をより効率的に抽出する新しいフレームワークである。
提案手法は,CNNの動作効率と,トランスフォーマに見られる注意機構の動的特徴抽出機能を組み合わせたものである。
このアプローチは、現在のベンチマークを超えて分類精度を改善し、トランスフォーマーのような高度なモデルで遭遇する計算の非効率性に対処する。
論文 参考訳(メタデータ) (2024-03-30T07:27:36Z) - ADASR: An Adversarial Auto-Augmentation Framework for Hyperspectral and
Multispectral Data Fusion [54.668445421149364]
HSI(Deep Learning-based Hyperspectral Image)は、HSI(Hyperspectral Image)とMSI(Multispectral Image)を深層ニューラルネットワーク(DNN)に融合させることにより、高空間分解能HSI(HR-HSI)を生成することを目的としている。
本稿では, HSI-MSI 融合のためのデータ多様性を向上するために, HSI-MSI サンプルペアの自動最適化と拡張を行う新しい逆自動データ拡張フレームワーク ADASR を提案する。
論文 参考訳(メタデータ) (2023-10-11T07:30:37Z) - ESSAformer: Efficient Transformer for Hyperspectral Image
Super-resolution [76.7408734079706]
単一ハイパースペクトル像超解像(単一HSI-SR)は、低分解能観測から高分解能ハイパースペクトル像を復元することを目的としている。
本稿では,1つのHSI-SRの繰り返し精製構造を持つESSA注目組込みトランスフォーマネットワークであるESSAformerを提案する。
論文 参考訳(メタデータ) (2023-07-26T07:45:14Z) - Learning A 3D-CNN and Transformer Prior for Hyperspectral Image
Super-Resolution [80.93870349019332]
本稿では,CNN の代わりに Transformer を用いて HSI の事前学習を行う新しい HSISR 手法を提案する。
具体的には、まず勾配アルゴリズムを用いてHSISRモデルを解き、次に展開ネットワークを用いて反復解過程をシミュレートする。
論文 参考訳(メタデータ) (2021-11-27T15:38:57Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
インテリジェントサーフェス(IRS)は、個々の散乱素子の位相シフトを制御して無線チャネルを再形成するために用いられる。
散乱素子の規模が大きいため、受動ビームフォーミングは一般に高い計算複雑性によって挑戦される。
本稿では、IRS支援無線ネットワークの性能向上のための機械学習(ML)アプローチに焦点を当てる。
論文 参考訳(メタデータ) (2020-08-29T08:39:43Z) - Cross-Attention in Coupled Unmixing Nets for Unsupervised Hyperspectral
Super-Resolution [79.97180849505294]
本稿では,HSIの空間分解能を高めるために,CUCaNetというクロスアテンション機構を備えた新しい結合型アンミックスネットワークを提案する。
3つの広く使われているHS-MSデータセットに対して、最先端のHSI-SRモデルと比較実験を行った。
論文 参考訳(メタデータ) (2020-07-10T08:08:20Z) - Spatial-Spectral Residual Network for Hyperspectral Image
Super-Resolution [82.1739023587565]
ハイパースペクトル画像超解像のための新しいスペクトル空間残差ネットワーク(SSRNet)を提案する。
提案手法は,2次元畳み込みではなく3次元畳み込みを用いて空間スペクトル情報の探索を効果的に行うことができる。
各ユニットでは空間的・時間的分離可能な3次元畳み込みを用いて空間的・スペクトル的な情報を抽出する。
論文 参考訳(メタデータ) (2020-01-14T03:34:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。