論文の概要: diffConv: Analyzing Irregular Point Clouds with an Irregular View
- arxiv url: http://arxiv.org/abs/2111.14658v1
- Date: Mon, 29 Nov 2021 16:16:09 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-30 21:01:34.032265
- Title: diffConv: Analyzing Irregular Point Clouds with an Irregular View
- Title(参考訳): diffConv:不規則な視点で不規則な点雲を分析する
- Authors: Manxi Lin and Aasa Feragen
- Abstract要約: 差分グラフ畳み込み(diffConv)という新しいグラフ畳み込みを提案する。
diffConvは空間的に変化し、密度に富んだ地区で動作する。
我々はModelNet40ポイントクラウド分類ベンチマークでモデルを検証した。
- 参考スコア(独自算出の注目度): 5.025654873456756
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Standard spatial convolutions assume input data with a regular neighborhood
structure. Existing methods typically generalize convolution to the irregular
point cloud domain by fixing a regular "view" through e.g. a fixed neighborhood
size, where the convolution kernel size remains the same for each point.
However, since point clouds are not as structured as images, the fixed neighbor
number gives an unfortunate inductive bias. We present a novel graph
convolution named Difference Graph Convolution (diffConv), which does not rely
on a regular view. diffConv operates on spatially-varying and density-dilated
neighborhoods, which are further adapted by a learned masked attention
mechanism. We validate our model on the ModelNet40 point cloud classification
benchmark, obtaining state-of-the-art performance and far more robustness to
noise, along with a much faster inference speed.
- Abstract(参考訳): 標準空間畳み込みは、通常の近傍構造を持つ入力データを仮定する。
既存の方法は典型的には、通常の「ビュー」を固定された近傍サイズで固定することで、不規則な点のクラウド領域への畳み込みを一般化する。
しかし、点雲は画像ほど構成されていないため、固定隣接数は不運な帰納バイアスを与える。
本稿では,差分グラフ畳み込み(diffConv)と呼ばれる新しいグラフ畳み込みについて述べる。
diffconvは、空間的変動と密度拡大した近傍で動作し、さらに学習されたマスク付き注意機構によって適応される。
modelnet40 point cloud classification benchmarkでモデルを検証し、最先端のパフォーマンスとノイズに対するロバスト性を獲得し、より高速な推論速度を実現しました。
関連論文リスト
- Inferring Neural Signed Distance Functions by Overfitting on Single Noisy Point Clouds through Finetuning Data-Driven based Priors [53.6277160912059]
本稿では,データ駆動型およびオーバーフィット型手法のプロースを推進し,より一般化し,高速な推論を行い,より高精度なニューラルネットワークSDFを学習する手法を提案する。
そこで本研究では,距離管理やクリーンポイントクラウド,あるいは点正規化を伴わずに,データ駆動型プリエントを微調整できる新しい統計的推論アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-25T16:48:44Z) - Learning Continuous Implicit Field with Local Distance Indicator for
Arbitrary-Scale Point Cloud Upsampling [55.05706827963042]
点雲アップサンプリングは、疎点雲から密度が高く均一に分散した点集合を生成することを目的としている。
従来のメソッドは通常、スパースポイントクラウドをいくつかのローカルパッチ、アップサンプルパッチポイント、すべてのアップサンプルパッチにマージする。
そこで本研究では,点雲のアップサンプリングのために,局所的な先行者によって導かれる符号のない距離場を学習する手法を提案する。
論文 参考訳(メタデータ) (2023-12-23T01:52:14Z) - Mixing-Denoising Generalizable Occupancy Networks [10.316008740970037]
現在の最先端の暗黙のニューラル形状モデルは、畳み込みの帰納的バイアスに依存している。
固有モデルバイアスを緩和し、再構成タスクに関連する補助正規化で仮説空間を制約する。
結果として得られたモデルは、ポイントクラウドネットワークからローカルに条件付けされた最初のMLPである。
論文 参考訳(メタデータ) (2023-11-20T19:05:57Z) - Quadric Representations for LiDAR Odometry, Mapping and Localization [93.24140840537912]
現在のLiDARオードメトリ、マッピング、ローカライズ手法は、3Dシーンのポイントワイズ表現を利用する。
3次元オブジェクトのよりコンパクトな表現である2次元曲面を用いたシーン記述法を提案する。
提案手法は低レイテンシとメモリの有効性を維持しつつ、競争力があり、しかも精度も優れている。
論文 参考訳(メタデータ) (2023-04-27T13:52:01Z) - Shape-invariant 3D Adversarial Point Clouds [111.72163188681807]
逆境と不可視性は、逆境の摂動の2つの基本的だが矛盾する性格である。
3Dポイントのクラウド認識に対する以前の敵対的攻撃は、しばしば目立ったポイントアウトリーチによって批判された。
本稿では,点摂動の効率性と非受容性を両立させる新しい点-クラウド感度マップを提案する。
論文 参考訳(メタデータ) (2022-03-08T12:21:35Z) - Differentiable Convolution Search for Point Cloud Processing [114.66038862207118]
本稿では,点雲上での新しい差分畳み込み探索パラダイムを提案する。
純粋にデータ駆動型であり、幾何学的形状モデリングに適した畳み込みのグループを自動生成することができる。
また,内部畳み込みと外部アーキテクチャの同時探索のための共同最適化フレームワークを提案する。
論文 参考訳(メタデータ) (2021-08-29T14:42:03Z) - Adaptive Graph Convolution for Point Cloud Analysis [25.175406613705274]
本稿では,動的に学習した特徴に応じて適応的なカーネルを生成する適応グラフ畳み込み(Adaptive Graph Convolution, AdaptConv)を提案する。
提案手法は,いくつかのベンチマークデータセットにおいて,最先端のクラウド分類とセグメンテーションアプローチより優れている。
論文 参考訳(メタデータ) (2021-08-18T08:38:52Z) - SSPU-Net: Self-Supervised Point Cloud Upsampling via Differentiable
Rendering [21.563862632172363]
地中真理を使わずに高密度の点雲を生成するための自己教師付き点雲アップサンプリングネットワーク(SSPU-Net)を提案する。
これを実現するために,入力スパース点雲と高密度点雲との整合性を利用して画像の形状と描画を行う。
論文 参考訳(メタデータ) (2021-08-01T13:26:01Z) - Robust Point Cloud Registration Framework Based on Deep Graph Matching [5.865029600972316]
3Dポイントクラウド登録は、コンピュータビジョンとロボティクスにおける基本的な問題です。
点群登録のための深層グラフマッチングに基づく新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2021-03-07T04:20:29Z) - Point2Mesh: A Self-Prior for Deformable Meshes [83.31236364265403]
本稿では,入力点雲から表面メッシュを再構築する技術であるPoint2Meshを紹介する。
自己優先型は、ディープニューラルネットワークの重み内の単一の形状から幾何的繰り返しをカプセル化する。
ここでは,Point2Meshが所望の解に収束することを示す。
論文 参考訳(メタデータ) (2020-05-22T10:01:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。