Understanding Quantum Technologies 2023
- URL: http://arxiv.org/abs/2111.15352v4
- Date: Sun, 12 Nov 2023 13:55:39 GMT
- Title: Understanding Quantum Technologies 2023
- Authors: Olivier Ezratty
- Abstract summary: Understanding Quantum Technologies 2023 is a creative-commons ebook that provides a 360 degrees overview of quantum technologies.
Main audience are computer science engineers, developers and IT specialists as well as quantum scientists and students.
This version is an update to the 2022 and 2021 editions published respectively in October 2022 and October 2021.
- Score: 2.6107298043931206
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Understanding Quantum Technologies 2023 is a creative-commons ebook that
provides a unique 360 degrees overview of quantum technologies from science and
technology to geopolitical and societal issues. It covers quantum physics
history, quantum physics 101, gate-based quantum computing, quantum computing
engineering (including quantum error corrections and quantum computing
energetics), quantum computing hardware (all qubit types, including quantum
annealing and quantum simulation paradigms, history, science, research,
implementation and vendors), quantum enabling technologies (cryogenics, control
electronics, photonics, components fabs, raw materials), unconventional
computing (potential alternatives to quantum and classical computing), quantum
telecommunications and cryptography, quantum sensing, quantum computing
algorithms, software development tools and use cases, quantum technologies
around the world, quantum technologies societal impact and even quantum fake
sciences. The main audience are computer science engineers, developers and IT
specialists as well as quantum scientists and students who want to acquire a
global view of how quantum technologies work, and particularly quantum
computing. This version is an update to the 2022 and 2021 editions published
respectively in October 2022 and October 2021. An update log is provided at the
end of the book.
Related papers
- The Quantum Internet (Technical Version) [4.673899568189874]
Following the emergence of quantum computing, the subsequent quantum revolution will be that of interconnecting individual quantum computers at global level.
This work examines in detail how the quantum internet would evolve in practice, focusing not only on the technology itself but also on the implications it will have economically and politically.
arXiv Detail & Related papers (2025-01-21T13:04:06Z) - Technology and Performance Benchmarks of IQM's 20-Qubit Quantum Computer [56.435136806763055]
IQM Quantum Computers is described covering both the QPU and the rest of the full-stack quantum computer.
The focus is on a 20-qubit quantum computer featuring the Garnet QPU and its architecture, which we will scale up to 150 qubits.
We present QPU and system-level benchmarks, including a median 2-qubit gate fidelity of 99.5% and genuinely entangling all 20 qubits in a Greenberger-Horne-Zeilinger (GHZ) state.
arXiv Detail & Related papers (2024-08-22T14:26:10Z) - Quantum Computing: Vision and Challenges [16.50566018023275]
We discuss cutting-edge developments in quantum computer hardware advancement and subsequent advances in quantum cryptography, quantum software, and high-scalability quantum computers.
Many potential challenges and exciting new trends for quantum technology research and development are highlighted in this paper for a broader debate.
arXiv Detail & Related papers (2024-03-04T17:33:18Z) - The QUATRO Application Suite: Quantum Computing for Models of Human
Cognition [49.038807589598285]
We unlock a new class of applications ripe for quantum computing research -- computational cognitive modeling.
We release QUATRO, a collection of quantum computing applications from cognitive models.
arXiv Detail & Related papers (2023-09-01T17:34:53Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Architectures for Quantum Information Processing [5.190207094732672]
Quantum computing is changing the way we think about computing.
Quantum phenomena like superposition, entanglement, and interference can be exploited to solve issues that are difficult for traditional computers.
IBM's first public access to true quantum computers through the cloud, as well as Google's demonstration of quantum supremacy, are among the accomplishments.
arXiv Detail & Related papers (2022-11-11T19:18:44Z) - The Quantum Internet: A Hardware Review [0.0]
The quantum internet is the next major milestone in quantum technology.
This paper reviews the hardware aspects of the quantum internet, mainly from a photonics perspective.
arXiv Detail & Related papers (2022-06-30T15:53:05Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
Quantum generative learning models (QGLMs) may surpass their classical counterparts.
We review the current progress of QGLMs from the perspective of machine learning.
We discuss the potential applications of QGLMs in both conventional machine learning tasks and quantum physics.
arXiv Detail & Related papers (2022-06-07T07:32:57Z) - Standard Model Physics and the Digital Quantum Revolution: Thoughts
about the Interface [68.8204255655161]
Advances in isolating, controlling and entangling quantum systems are transforming what was once a curious feature of quantum mechanics into a vehicle for disruptive scientific and technological progress.
From the perspective of three domain science theorists, this article compiles thoughts about the interface on entanglement, complexity, and quantum simulation.
arXiv Detail & Related papers (2021-07-10T06:12:06Z) - Quantum Computing - A new scientific revolution in the making [2.240702708599667]
We advocate the PISQ approach: Perfect Intermediate-Scale Quantum computing based on a well-established concept of perfect qubits.
We expand the quantum road map with (N)FTQC, which stands for (Non) Fault-Tolerant Quantum Computing.
This will allow researchers to focus exclusively on developing new applications by defining the algorithms in terms of perfect qubits.
arXiv Detail & Related papers (2021-06-22T14:56:55Z) - Quantum walk processes in quantum devices [55.41644538483948]
We study how to represent quantum walk on a graph as a quantum circuit.
Our approach paves way for the efficient implementation of quantum walks algorithms on quantum computers.
arXiv Detail & Related papers (2020-12-28T18:04:16Z) - Quantum Computation [0.0]
We will discuss and summarized the core principles and practical application areas of quantum computation.
The mapping of computation onto the behavior of physical systems is a historical challenge.
We will evaluate the essential technology required for quantum computers to be able to function correctly.
arXiv Detail & Related papers (2020-06-04T11:57:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.