論文の概要: Improving Differentiable Architecture Search with a Generative Model
- arxiv url: http://arxiv.org/abs/2112.00171v1
- Date: Tue, 30 Nov 2021 23:28:02 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-03 04:15:23.201394
- Title: Improving Differentiable Architecture Search with a Generative Model
- Title(参考訳): 生成モデルによる微分可能なアーキテクチャ探索の改善
- Authors: Ruisi Zhang, Youwei Liang, Sai Ashish Somayajula, Pengtao Xie
- Abstract要約: 我々は、生成モデルを用いた微分可能なアーキテクチャ探索(DASGM)と呼ばれるトレーニング戦略を導入する。
DASGMでは、トレーニングセットを使用して分類モデルの重みを更新し、合成データセットを使用してアーキテクチャをトレーニングする。
生成された画像はトレーニングセットと異なる分布を持ち、分類モデルがその弱点を識別するためにより良い特徴を学ぶのに役立つ。
- 参考スコア(独自算出の注目度): 10.618008515822483
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In differentiable neural architecture search (NAS) algorithms like DARTS, the
training set used to update model weight and the validation set used to update
model architectures are sampled from the same data distribution. Thus, the
uncommon features in the dataset fail to receive enough attention during
training. In this paper, instead of introducing more complex NAS algorithms, we
explore the idea that adding quality synthesized datasets into training can
help the classification model identify its weakness and improve recognition
accuracy. We introduce a training strategy called ``Differentiable Architecture
Search with a Generative Model(DASGM)." In DASGM, the training set is used to
update the classification model weight, while a synthesized dataset is used to
train its architecture. The generated images have different distributions from
the training set, which can help the classification model learn better features
to identify its weakness. We formulate DASGM into a multi-level optimization
framework and develop an effective algorithm to solve it. Experiments on
CIFAR-10, CIFAR-100, and ImageNet have demonstrated the effectiveness of DASGM.
Code will be made available.
- Abstract(参考訳): DARTSのような差別化可能なニューラルネットワーク探索(NAS)アルゴリズムでは、モデルの重みを更新するトレーニングセットと、モデルアーキテクチャを更新する検証セットは同じデータ分布からサンプリングされる。
したがって、データセット内の珍しい機能は、トレーニング中に十分な注意を引かない。
本稿では、より複雑なNASアルゴリズムを導入する代わりに、高品質な合成データセットをトレーニングに追加することで、分類モデルがその弱点を識別し、認識精度を向上させることができるという考えを考察する。
本稿では,DASGM(Differentiable Architecture Search with a Generative Model)と呼ばれる学習戦略を紹介する。
DASGMでは、トレーニングセットを使用して分類モデルの重みを更新し、合成データセットを使用してアーキテクチャをトレーニングします。
生成された画像はトレーニングセットと異なる分布を持ち、分類モデルがその弱点を識別するためにより良い特徴を学ぶのに役立つ。
dasgmをマルチレベル最適化フレームワークに定式化し,それを解決する効果的なアルゴリズムを開発した。
CIFAR-10、CIFAR-100、ImageNetの実験は、DASGMの有効性を実証した。
コードは利用可能になる。
関連論文リスト
- Neural Architecture Search using Particle Swarm and Ant Colony
Optimization [0.0]
本稿では,OpenNASのSwarm Intelligence (SI)コンポーネントを用いたCNNのトレーニングと最適化に焦点を当てる。
画像の分類において,OpenNAS(Neural Architecture Search)のオープンソースツールを統合するシステムを開発した。
論文 参考訳(メタデータ) (2024-03-06T15:23:26Z) - POPNASv3: a Pareto-Optimal Neural Architecture Search Solution for Image
and Time Series Classification [8.190723030003804]
本稿では、異なるハードウェア環境と複数の分類タスクを対象とした逐次モデルベースNASアルゴリズムの第3版について述べる。
提案手法は,異なるタスクに適応するフレキシブルな構造とデータ処理パイプラインを維持しながら,大規模な検索空間内で競合するアーキテクチャを見つけることができる。
画像と時系列の分類データセットで実施された実験は、POPNASv3が多種多様な演算子を探索し、異なるシナリオで提供されるデータの種類に適した最適なアーキテクチャに収束できることを示す。
論文 参考訳(メタデータ) (2022-12-13T17:14:14Z) - NAR-Former: Neural Architecture Representation Learning towards Holistic
Attributes Prediction [37.357949900603295]
本稿では,属性の全体的推定に使用できるニューラルネットワーク表現モデルを提案する。
実験の結果,提案するフレームワークは,セルアーキテクチャとディープニューラルネットワーク全体の遅延特性と精度特性を予測できることがわかった。
論文 参考訳(メタデータ) (2022-11-15T10:15:21Z) - Neural Attentive Circuits [93.95502541529115]
我々は、NAC(Neural Attentive Circuits)と呼ばれる汎用的でモジュラーなニューラルアーキテクチャを導入する。
NACは、ドメイン知識を使わずに、ニューラルネットワークモジュールのパラメータ化と疎結合を学習する。
NACは推論時に8倍のスピードアップを達成するが、性能は3%以下である。
論文 参考訳(メタデータ) (2022-10-14T18:00:07Z) - FlowNAS: Neural Architecture Search for Optical Flow Estimation [65.44079917247369]
本研究では,フロー推定タスクにおいて,より優れたエンコーダアーキテクチャを自動で見つけるために,FlowNASというニューラルアーキテクチャ探索手法を提案する。
実験の結果、スーパーネットワークから受け継いだ重み付きアーキテクチャは、KITTI上で4.67%のF1-allエラーを達成していることがわかった。
論文 参考訳(メタデータ) (2022-07-04T09:05:25Z) - DST: Dynamic Substitute Training for Data-free Black-box Attack [79.61601742693713]
そこで本研究では,対象モデルからより高速に学習するための代用モデルの促進を目的とした,新しい動的代用トレーニング攻撃手法を提案する。
タスク駆動型グラフに基づく構造情報学習の制約を導入し、生成したトレーニングデータの質を向上させる。
論文 参考訳(メタデータ) (2022-04-03T02:29:11Z) - AutoBERT-Zero: Evolving BERT Backbone from Scratch [94.89102524181986]
そこで本稿では,提案するハイブリッドバックボーンアーキテクチャを自動検索するOP-NASアルゴリズムを提案する。
提案するOP-NASの効率を向上させるために,探索アルゴリズムと候補モデルの評価を最適化する。
実験の結果、検索されたアーキテクチャ(AutoBERT-Zero)は、様々な下流タスクにおいてBERTとそのバリエーションの異なるモデル容量を著しく上回っていることがわかった。
論文 参考訳(メタデータ) (2021-07-15T16:46:01Z) - Understanding Dynamics of Nonlinear Representation Learning and Its
Application [12.697842097171119]
暗黙的非線形表現学習のダイナミクスについて検討する。
我々は,データ構造アライメント条件がグローバル収束に十分であることを示す。
我々はデータ構造アライメント条件を満たす新しいトレーニングフレームワークを作成した。
論文 参考訳(メタデータ) (2021-06-28T16:31:30Z) - Rank-R FNN: A Tensor-Based Learning Model for High-Order Data
Classification [69.26747803963907]
Rank-R Feedforward Neural Network (FNN)は、そのパラメータにCanonical/Polyadic分解を課すテンソルベースの非線形学習モデルである。
まず、入力をマルチリニアアレイとして扱い、ベクトル化の必要性を回避し、すべてのデータ次元に沿って構造情報を十分に活用することができる。
Rank-R FNNの普遍的な近似と学習性の特性を確立し、実世界のハイパースペクトルデータセットのパフォーマンスを検証する。
論文 参考訳(メタデータ) (2021-04-11T16:37:32Z) - Few-Shot Named Entity Recognition: A Comprehensive Study [92.40991050806544]
マルチショット設定のモデル一般化能力を向上させるための3つの手法を検討する。
ラベル付きデータの比率の異なる10の公開nerデータセットについて経験的比較を行う。
マルチショットとトレーニングフリーの両方の設定で最新の結果を作成します。
論文 参考訳(メタデータ) (2020-12-29T23:43:16Z) - Sparse Signal Models for Data Augmentation in Deep Learning ATR [0.8999056386710496]
ドメイン知識を取り入れ,データ集約学習アルゴリズムの一般化能力を向上させるためのデータ拡張手法を提案する。
本研究では,空間領域における散乱中心のスパース性とアジムタル領域における散乱係数の滑らかな変動構造を活かし,過パラメータモデルフィッティングの問題を解く。
論文 参考訳(メタデータ) (2020-12-16T21:46:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。