Conjectured $DXZ$ decompositions of a unitary matrix
- URL: http://arxiv.org/abs/2112.00226v1
- Date: Wed, 1 Dec 2021 01:59:15 GMT
- Title: Conjectured $DXZ$ decompositions of a unitary matrix
- Authors: Alexis De Vos, Martin Idel, Stijn De Baerdemacker
- Abstract summary: We conjecture that these two decompositions are merely special cases of a set of decompositions.
For lack of a proof, we provide an iterative Sinkhorn algorithm to find an approximate numerical decomposition.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: For any unitary matrix there exists a ZXZ decomposition, according to a
theorem by Idel and Wolf. For any even-dimensional unitary matrix there exists
a block-ZXZ decomposition, according to a theorem by F\"uhr and Rzeszotnik. We
conjecture that these two decompositions are merely special cases of a set of
decompositions, one for every divisor of the matrix dimension. For lack of a
proof, we provide an iterative Sinkhorn algorithm to find an approximate
numerical decomposition.
Related papers
- Entrywise error bounds for low-rank approximations of kernel matrices [55.524284152242096]
We derive entrywise error bounds for low-rank approximations of kernel matrices obtained using the truncated eigen-decomposition.
A key technical innovation is a delocalisation result for the eigenvectors of the kernel matrix corresponding to small eigenvalues.
We validate our theory with an empirical study of a collection of synthetic and real-world datasets.
arXiv Detail & Related papers (2024-05-23T12:26:25Z) - Matrix decompositions in Quantum Optics: Takagi/Autonne,
Bloch-Messiah/Euler, Iwasawa, and Williamson [0.0]
We present four important matrix decompositions commonly used in quantum optics.
The first two of these decompositions are specialized versions of the singular-value decomposition.
The third factors any symplectic matrix in a unique way in terms of matrices that belong to different subgroups of the symplectic group.
arXiv Detail & Related papers (2024-03-07T15:43:17Z) - Mutually-orthogonal unitary and orthogonal matrices [6.9607365816307]
We show that the minimum and maximum numbers of an unextendible maximally entangled bases within a real two-qutrit system are three and four, respectively.
As an application in quantum information theory, we show that the minimum and maximum numbers of an unextendible maximally entangled bases within a real two-qutrit system are three and four, respectively.
arXiv Detail & Related papers (2023-09-20T08:20:57Z) - One-sided Matrix Completion from Two Observations Per Row [95.87811229292056]
We propose a natural algorithm that involves imputing the missing values of the matrix $XTX$.
We evaluate our algorithm on one-sided recovery of synthetic data and low-coverage genome sequencing.
arXiv Detail & Related papers (2023-06-06T22:35:16Z) - Annihilating Entanglement Between Cones [77.34726150561087]
We show that Lorentz cones are the only cones with a symmetric base for which a certain stronger version of the resilience property is satisfied.
Our proof exploits the symmetries of the Lorentz cones and applies two constructions resembling protocols for entanglement distillation.
arXiv Detail & Related papers (2021-10-22T15:02:39Z) - Identifiability in Exact Two-Layer Sparse Matrix Factorization [0.0]
Sparse matrix factorization is the problem of approximating a matrix Z by a product of L sparse factors X(L) X(L--1).
This paper focuses on identifiability issues that appear in this problem, in view of better understanding under which sparsity constraints the problem is well-posed.
arXiv Detail & Related papers (2021-10-04T07:56:37Z) - Non-PSD Matrix Sketching with Applications to Regression and
Optimization [56.730993511802865]
We present dimensionality reduction methods for non-PSD and square-roots" matrices.
We show how these techniques can be used for multiple downstream tasks.
arXiv Detail & Related papers (2021-06-16T04:07:48Z) - Unique sparse decomposition of low rank matrices [17.037882881652617]
We find a unique decomposition of a low rank matrixYin mathbbRrtimes n$.
We prove that up to some $Yin mathRrtimes n$ is a sparse-wise decomposition of $Xin mathbbRrtimes n$.
arXiv Detail & Related papers (2021-06-14T20:05:59Z) - A Practical Method for Constructing Equivariant Multilayer Perceptrons
for Arbitrary Matrix Groups [115.58550697886987]
We provide a completely general algorithm for solving for the equivariant layers of matrix groups.
In addition to recovering solutions from other works as special cases, we construct multilayer perceptrons equivariant to multiple groups that have never been tackled before.
Our approach outperforms non-equivariant baselines, with applications to particle physics and dynamical systems.
arXiv Detail & Related papers (2021-04-19T17:21:54Z) - The decomposition of an arbitrary $2^w\times 2^w$ unitary matrix into
signed permutation matrices [0.0]
Birkhoff's theorem tells that any doubly matrix can be decomposed as a weighted sum of permutation matrices.
A similar theorem reveals that any unitary matrix can be decomposed as a weighted sum of complex permutation matrices.
arXiv Detail & Related papers (2020-05-26T18:26:05Z) - Relative Error Bound Analysis for Nuclear Norm Regularized Matrix Completion [101.83262280224729]
We develop a relative error bound for nuclear norm regularized matrix completion.
We derive a relative upper bound for recovering the best low-rank approximation of the unknown matrix.
arXiv Detail & Related papers (2015-04-26T13:12:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.