Molecular Contrastive Learning with Chemical Element Knowledge Graph
- URL: http://arxiv.org/abs/2112.00544v1
- Date: Wed, 1 Dec 2021 15:04:39 GMT
- Title: Molecular Contrastive Learning with Chemical Element Knowledge Graph
- Authors: Yin Fang, Qiang Zhang, Haihong Yang, Xiang Zhuang, Shumin Deng, Wen
Zhang, Ming Qin, Zhuo Chen, Xiaohui Fan, Huajun Chen
- Abstract summary: Molecular representation learning contributes to multiple downstream tasks such as molecular property prediction and drug design.
We construct a Chemical Element Knowledge Graph (KG) to summarize microscopic associations between elements.
The first module, knowledge-guided graph augmentation, augments the original molecular graph based on the Chemical Element KG.
The second module, knowledge-aware graph representation, extracts molecular representations with a common graph encoder for the original molecular graph and a Knowledge-aware Message Passing Neural Network (KMPNN) to encode complex information in the augmented molecular graph.
- Score: 16.136921143416927
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Molecular representation learning contributes to multiple downstream tasks
such as molecular property prediction and drug design. To properly represent
molecules, graph contrastive learning is a promising paradigm as it utilizes
self-supervision signals and has no requirements for human annotations.
However, prior works fail to incorporate fundamental domain knowledge into
graph semantics and thus ignore the correlations between atoms that have common
attributes but are not directly connected by bonds. To address these issues, we
construct a Chemical Element Knowledge Graph (KG) to summarize microscopic
associations between elements and propose a novel Knowledge-enhanced
Contrastive Learning (KCL) framework for molecular representation learning. KCL
framework consists of three modules. The first module, knowledge-guided graph
augmentation, augments the original molecular graph based on the Chemical
Element KG. The second module, knowledge-aware graph representation, extracts
molecular representations with a common graph encoder for the original
molecular graph and a Knowledge-aware Message Passing Neural Network (KMPNN) to
encode complex information in the augmented molecular graph. The final module
is a contrastive objective, where we maximize agreement between these two views
of molecular graphs. Extensive experiments demonstrated that KCL obtained
superior performances against state-of-the-art baselines on eight molecular
datasets. Visualization experiments properly interpret what KCL has learned
from atoms and attributes in the augmented molecular graphs. Our codes and data
are available in supplementary materials.
Related papers
- Molecular Property Prediction Based on Graph Structure Learning [29.516479802217205]
We propose a graph structure learning (GSL) based MPP approach, called GSL-MPP.
Specifically, we first apply graph neural network (GNN) over molecular graphs to extract molecular representations.
With molecular fingerprints, we construct a molecular similarity graph (MSG)
arXiv Detail & Related papers (2023-12-28T06:45:13Z) - MolGrapher: Graph-based Visual Recognition of Chemical Structures [50.13749978547401]
We introduce MolGrapher to recognize chemical structures visually.
We treat all candidate atoms and bonds as nodes and put them in a graph.
We classify atom and bond nodes in the graph with a Graph Neural Network.
arXiv Detail & Related papers (2023-08-23T16:16:11Z) - Bi-level Contrastive Learning for Knowledge-Enhanced Molecule
Representations [55.42602325017405]
We propose a novel method called GODE, which takes into account the two-level structure of individual molecules.
By pre-training two graph neural networks (GNNs) on different graph structures, combined with contrastive learning, GODE fuses molecular structures with their corresponding knowledge graph substructures.
When fine-tuned across 11 chemical property tasks, our model outperforms existing benchmarks, registering an average ROC-AUC uplift of 13.8% for classification tasks and an average RMSE/MAE enhancement of 35.1% for regression tasks.
arXiv Detail & Related papers (2023-06-02T15:49:45Z) - Atomic and Subgraph-aware Bilateral Aggregation for Molecular
Representation Learning [57.670845619155195]
We introduce a new model for molecular representation learning called the Atomic and Subgraph-aware Bilateral Aggregation (ASBA)
ASBA addresses the limitations of previous atom-wise and subgraph-wise models by incorporating both types of information.
Our method offers a more comprehensive way to learn representations for molecular property prediction and has broad potential in drug and material discovery applications.
arXiv Detail & Related papers (2023-05-22T00:56:00Z) - Conditional Graph Information Bottleneck for Molecular Relational
Learning [9.56625683182106]
We propose a novel relational learning framework, CGIB, that predicts the interaction behavior between a pair of graphs by detecting core subgraphs therein.
Our proposed method mimics the nature of chemical reactions, i.e., the core substructure of a molecule varies depending on which other molecule it interacts with.
arXiv Detail & Related papers (2023-04-29T01:17:43Z) - A Molecular Multimodal Foundation Model Associating Molecule Graphs with
Natural Language [63.60376252491507]
We propose a molecular multimodal foundation model which is pretrained from molecular graphs and their semantically related textual data.
We believe that our model would have a broad impact on AI-empowered fields across disciplines such as biology, chemistry, materials, environment, and medicine.
arXiv Detail & Related papers (2022-09-12T00:56:57Z) - Chemical-Reaction-Aware Molecule Representation Learning [88.79052749877334]
We propose using chemical reactions to assist learning molecule representation.
Our approach is proven effective to 1) keep the embedding space well-organized and 2) improve the generalization ability of molecule embeddings.
Experimental results demonstrate that our method achieves state-of-the-art performance in a variety of downstream tasks.
arXiv Detail & Related papers (2021-09-21T00:08:43Z) - Knowledge-aware Contrastive Molecular Graph Learning [5.08771973600915]
We propose Contrastive Knowledge-aware GNN (CKGNN) for self-supervised molecular representation learning.
We explicitly encode domain knowledge via knowledge-aware molecular encoder under the contrastive learning framework.
Experiments on 8 public datasets demonstrate the effectiveness of our model with a 6% absolute improvement on average.
arXiv Detail & Related papers (2021-03-24T08:55:08Z) - MolCLR: Molecular Contrastive Learning of Representations via Graph
Neural Networks [11.994553575596228]
MolCLR is a self-supervised learning framework for large unlabeled molecule datasets.
We propose three novel molecule graph augmentations: atom masking, bond deletion, and subgraph removal.
Our method achieves state-of-the-art performance on many challenging datasets.
arXiv Detail & Related papers (2021-02-19T17:35:18Z) - Self-Supervised Graph Transformer on Large-Scale Molecular Data [73.3448373618865]
We propose a novel framework, GROVER, for molecular representation learning.
GROVER can learn rich structural and semantic information of molecules from enormous unlabelled molecular data.
We pre-train GROVER with 100 million parameters on 10 million unlabelled molecules -- the biggest GNN and the largest training dataset in molecular representation learning.
arXiv Detail & Related papers (2020-06-18T08:37:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.